9 resultados para Dosage
em University of Queensland eSpace - Australia
Resumo:
Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.
Resumo:
Objective - To study the possible dose dependence of the foetal malformation rate after exposure to sodium valproate in pregnancy Methods - Analysis of records of all foetuses in the Australian Registry of Antiepileptic Drugs in Pregnancy exposed to valproate, to carbamazepine, lamotrigine or phenytoin in the absence of valproate, and to no antiepileptic drugs. Results - The foetal malformation rate was higher (P < 0.05) in the 110 foetuses exposed to valproate alone (17.1%), and in the 165 exposed to valproate, whether alone or together with the other antiepileptic drugs (15.2%), than in the 297 exposed to the other drugs without valproate (2.4%). It was also higher (P < 0.10) than in the 40 not exposed to antiepileptic drugs (2.5%). Unlike the situation for the other drugs, the malformation rate in those exposed to valproate increased with increasing maternal drug dosage (P < 0.05). The rate was not altered by simultaneous exposure to the other drugs. Valproate doses exceeding 1400 mg per day seemed to be associated with a more steeply increasing malformation rate than at lower doses and with a different pattern of foetal malformations. Conclusion - Foetal exposure to valproate during pregnancy is associated with particularly high, and dose-dependent risks of malformation compared with other antiepileptic drugs, and may possibly involve different teratogenetic mechanisms.
Resumo:
Aim To develop an appropriate dosing strategy for continuous intravenous infusions (CII) of enoxaparin by minimizing the percentage of steady-state anti-Xa concentration (C-ss) outside the therapeutic range of 0.5-1.2 IU ml(-1). Methods A nonlinear mixed effects model was developed with NONMEM (R) for 48 adult patients who received CII of enoxaparin with infusion durations that ranged from 8 to 894 h at rates between 100 and 1600 IU h(-1). Three hundred and sixty-three anti-Xa concentration measurements were available from patients who received CII. These were combined with 309 anti-Xa concentrations from 35 patients who received subcutaneous enoxaparin. The effects of age, body size, height, sex, creatinine clearance (CrCL) and patient location [intensive care unit (ICU) or general medical unit] on pharmacokinetic (PK) parameters were evaluated. Monte Carlo simulations were used to (i) evaluate covariate effects on C-ss and (ii) compare the impact of different infusion rates on predicted C-ss. The best dose was selected based on the highest probability that the C-ss achieved would lie within the therapeutic range. Results A two-compartment linear model with additive and proportional residual error for general medical unit patients and only a proportional error for patients in ICU provided the best description of the data. Both CrCL and weight were found to affect significantly clearance and volume of distribution of the central compartment, respectively. Simulations suggested that the best doses for patients in the ICU setting were 50 IU kg(-1) per 12 h (4.2 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). The best doses for patients in the general medical unit were 60 IU kg(-1) per 12 h (5.0 IU kg(-1) h(-1)) if CrCL < 30 ml min(-1); 70 IU kg(-1) per 12 h (5.8 IU kg(-1) h(-1)) if CrCL was 30-50 ml min(-1); and 100 IU kg(-1) per 12 h (8.3 IU kg(-1) h(-1)) if CrCL > 50 ml min(-1). These best doses were selected based on providing the lowest equal probability of either being above or below the therapeutic range and the highest probability that the C-ss achieved would lie within the therapeutic range. Conclusion The dose of enoxaparin should be individualized to the patients' renal function and weight. There is some evidence to support slightly lower doses of CII enoxaparin in patients in the ICU setting.
Resumo:
Aim: To identify an appropriate dosage strategy for patients receiving enoxaparin by continuous intravenous infusion (CII). Methods: Monte Carlo simulations were performed in NONMEM, (200 replicates of 1000 patients) to predict steady state anti-Xa concentrations (Css) for patients receiving a CII of enoxaparin. The covariate distribution model was simulated based on covariate demographics in the CII study population. The impact of patient weight, renal function (creatinine clearance (CrCL)) and patient location (intensive care unit (ICU)) were evaluated. A population pharmacokinetic model was used as the input-output model (1-compartment first order output model with mixed residual error structure). Success of a dosing regimen was based on the percent of Css that is between the therapeutic range of 0.5 IU/ml to 1.2 IU/ml. Results: The best dose for patients in the ICU was 4.2IU/kg/h (success mean 64.8% and 90% prediction interval (PI): 60.1–69.8%) if CrCL60ml/min, the best dose was 8.3IU/kg/h (success mean 65.4%, 90% PI: 58.5–73.2%). Simulations suggest that there was a 50% improvement in the success of the CII if the dose rate for ICU patients with CrCL