79 resultados para Dormant fault segment

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-way quantum computing model introduced by Raussendorf and Briegel [Phys. Rev. Lett. 86, 5188 (2001)] shows that it is possible to quantum compute using only a fixed entangled resource known as a cluster state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for quantum computation, including a promising proposal for optical quantum computation based on cluster states [M. A. Nielsen, Phys. Rev. Lett. (to be published), quant-ph/0402005]. A significant open question is whether such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations based on cluster states, provided the noise in the implementations is below some constant threshold value. Our first threshold theorem applies to a class of implementations in which entangling gates are applied deterministically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-state proposal, in which nondeterministic entangling gates are used. A critical technical component of our proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a subspace of state space to extensions of those operations acting on the entire state space. We expect these theorems to have a variety of applications in other areas of quantum-information science.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shear deformation of fault gouge or other particulate materials often results in observed strain localization, or more precisely, the localization of measured deformation gradients. In conventional elastic materials the strain localization cannot take place therefore this phenomenon is attributed to special types of non-elastic constitutive behaviour. For particulate materials however the Cosserat continuum which takes care of microrotations independent of displacements is a more appropriate model. In elastic Cosserat continuum the localization in displacement gradients is possible under some combinations of the generalized Cosserat elastic moduli. The same combinations of parameters also correspond to a considerable dispersion in shear wave propagation which can be used for independent experimental verification of the proposed mechanism of apparent strain localization in fault gouge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct a theoretical analysis to investigate the convective instability of 3-D fluid-saturated geological fault zones when they are heated uniformly from below. In particular, we have derived exact analytical solutions for the critical Rayleigh numbers of different convective flow structures. Using these critical Rayleigh numbers, three interesting convective flow structures have been identified in a geological fault zone system. It has been recognized that the critical Rayleigh numbers of the system have a minimum value only for the fault zone of infinite length, in which the corresponding convective flow structure is a 2-D slender-circle flow. However, if the length of the fault zone is finite, the convective flow in the system must be 3-D. Even if the length of the fault zone is infinite, since the minimum critical Rayleigh number for the 2-D slender-circle flow structure is so close to that for the 3-D convective flow structure, the system may have almost the same chance to pick up the 3-D convective flow structures. Also, because the convection modes are so close for the 3-D convective flow structures, the convective flow may evolve into the 3-D finger-like structures, especially for the case of the fault thickness to height ratio approaching zero. This understanding demonstrates the beautiful aspects of the present analytical solution for the convective instability of 3-D geological fault zones, because the present analytical solution is valid for any value of the ratio of the fault height to thickness. Using the present analytical solution, the conditions, under which different convective flow structures may take place, can be easily determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct a theoretical analysis to investigate the double diffusion-driven convective instability of three-dimensional fluid-saturated geological fault zones when they are heated uniformly from below. The fault zone is assumed to be more permeable than its surrounding rocks. In particular, we have derived exact analytical solutions to the total critical Rayleigh numbers of the double diffusion-driven convective flow. Using the corresponding total critical Rayleigh numbers, the double diffusion-driven convective instability of a fluid-saturated three-dimensional geological fault zone system has been investigated. The related theoretical analysis demonstrates that: (1) The relative higher concentration of the chemical species at the top of the three-dimensional geological fault zone system can destabilize the convective flow of the system, while the relative lower concentration of the chemical species at the top of the three-dimensional geological fault zone system can stabilize the convective flow of the system. (2) The double diffusion-driven convective flow modes of the three-dimensional geological fault zone system are very close each other and therefore, the system may have the similar chance to pick up different double diffusion-driven convective flow modes, especially in the case of the fault thickness to height ratio approaching 0. (3) The significant influence of the chemical species diffusion on the convective instability of the three-dimensional geological fault zone system implies that the seawater intrusion into the surface of the Earth is a potential mechanism to trigger the convective flow in the shallow three-dimensional geological fault zone system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variable aspect ratio porphyroblasts deformed in non-coaxial flow. and internally containing rotated relicts of an external foliation, can be used to characterise plane strain flow regimes. The distribution obtained by plotting the orientation of the long axis of such grains, classified by aspect ratio, against the orientation of the internal foliation is potentially a sensitive gauge of both the bulk shear strain (as previously suggested) and kinematic vorticity number. We illustrate the method using rotated biotite porphyroblasts in the Alpine Schist: a sequence of mid-crustal rocks that have been ramped to the surface along the Alpine Fault. a major transpressional plate boundary. Results indicate that, at distances greater than or equal to similar to1 km from the fault, the rocks have undergone a combination of irrotational fattening and dextral-oblique, normal-sense shear, with a bulk shear strain of similar to0.6 and kinematic vorticity number of similar to0.2. The vorticity analysis is compatible with estimates of strongly oblate bulk strain of similar to 75% maximum shortening. Dextral-reverse transpressional flow characterises higher strain S-tectonite mylonite within similar to1 km of the Alpine Fault. These relationships provide insight into the kinematics of flow and distribution of strain in the hangingwall of the Alpine Fault and place constraints on numerical mechanical models for the exhumation of these mid-crustal rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our studies on two branching mutants of pea (Pisum sativum L.) have identified a further Ramosus locus, Rms6, with two recessive or partially recessive mutant alleles: rms6-1 (type line S2-271) and rms6-2 (type line K586). Mutants rms6-1 and rms6-2 were derived from dwarf and tall cultivars, Solara and Torsdag, respectively. The rms6 mutants are characterized by increased branching from basal nodes. In contrast, mutants rms1 through rms5 have increased branching from both basal and aerial (upper stem) nodes. Buds at the cotyledonary node of wild-type (WT) plants remain dormant but in rms6 plants these buds were usually released from dormancy. Their growth was either subsequently inhibited, sometimes even prior to emergence above ground, or they grew into secondary stems. The mutant phenotype was strongest for rms6-1 on the dwarf background. Although rms6-2 had a weak single-mutant phenotype, the rms3-1 rms6-2 double mutant showed clear transgression and an additive branching phenotype, with a total lateral length almost 2-fold greater than rms3-1 and nearly 5-fold greater than rms6-2 . Grafting studies between WT and rms6-1 plants demonstrated the primary action of Rms6 may be confined to the shoot. Young WT and rms6-1 shoots had similar auxin levels, and decapitated plants had a similar magnitude of response to applied auxin. Abscisic acid levels were elevated 2-fold at node 2 of young rms6-1 plants. The Rms6 locus mapped to the R to Gp segment of linkage group V (chromosome 3). The rms6 mutants will be useful for basic research and also have possible agronomical value.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient representation method for arbitrarily shaped image segments is proposed. This method includes a smart way to select wavelet basis to approximate the given image segment, with improved image quality and reduced computational load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mid-crustal Alpine Schist in central Southern Alps, New Zealand has been exhumed during the past similar to3 m.y. on the hanging wall of the oblique-slip Alpine Fault. These rocks underwent ductile deformation during their passage through the similar to 150-km-wide Pacific-Australia plate boundary zone. Likely to be Cretaceous in age, peak metamorphism predates the largely Pliocene and younger oblique convergence that continues to uplift the Southern Alps today. Late Cenozoic ductile deformation constructively reinforced a pre-existing fabric that was well oriented to accommodate a dextral-transpressive overprint. Quartz microstructures below a recently exhumed brittle-ductile transition zone reflect a late Cenozoic increment of ductile strain that was distributed across deeper levels of the Pacific Plate. Deformation was transpressive, including a dextral-normal shear component that bends and rotates a delaminated panel of Pacific Plate crust onto the oblique footwall ramp of the Alpine Fault. Progressive ductile shear in mylonites at the base of the Pacific Plate overprints earlier fabrics in a dextral-reverse sense, a deformation that accompanies translation of the schists up the Alpine Fault. Ductile shear along that structure affects not only the 12-km-thick section of Alpine mylonites, but is distributed across several kilometres of overlying nonmylonitic rocks. (C) 2001 Elsevier Science Ltd. All rights reserved.