71 resultados para Dobutamine Stress Echocardiography
em University of Queensland eSpace - Australia
Resumo:
Background: False-negative interpretations of do-butamine stress echocardiography (DSE) may be associated with reduced wall stress. using measurements of contraction, we sought whether these segments were actually ischemic but unrecognized or showed normal contraction. Methods. We studied 48 patients (29 men; mean age 60 +/- 10 years) with normal regional function on the basis of standard qualitative interpretation of DSE. At coronary angiography within. 6 months of DSE, 32 were identified as having true-negative and 16 as having false-negative results of DSE. Three apical views were used to measure regional function with color Doppler tissue, integrated backscatter, and strain rate imaging. Cyclic variation of integrated backscatter was measured in 16 segments, and strain rate and peak systolic strain was calculated in 6 walls at rest and peak stress. Results. Segments with false-negative results of DSE were divided into 2 groups with and without low wall stress according to previously published cut-off values. Age, sex, left ventricular mass, left ventricular geometric pattern, and peak workload were not significantly different between patients with true and false-negative results of DSE. Importantly, no significant differences in cyclic variation and strain parameters at rest and peak stress were found among segments with true-and false-negative results of DSE with and without low wall stress. Stenosis severity had no influence on cyclic variation and strain parameters at peak stress. Conclusions: False-negative results of DSE reflect lack of ischemia rather than underinterpretation of regional left ventricular function. Quantitative markers are unlikely to increase the sensitivity of DSE.
Resumo:
Aims Prior research is limited with regard to the diagnostic and prognostic accuracy of commonplace cardiac imaging modalities in women. The aim of this study was to examine 5-year mortality in 4234 women and 6898 men undergoing exercise or dobutamine stress echocardiography at three hospitals. Methods and results Univariable and multivariable Cox proportional hazards models were used to estimate time to cardiac death in this multi-centre, observational registry. Of the 11 132 patients, women had a greater frequency of cardiac risk factors (P < 0.0001). However, men more often had a history of coronary disease including a greater frequency of echocardiographic wall motion abnormalities (P < 0.0001). During 5 years of follow-up, 103 women and 226 men died from ischaernic heart disease (P < 0.0001). Echocardiographic estimates of left ventricular function (P < 0.0001) and the extent of ischaernic watt motion abnormalities (P < 0.0001) were highly predictive of cardiac death. Risk-adjusted 5-year survival was 99.4, 97.6, and 95% for exercising women with no, single, and multi-vessel ischaemia (P < 0.0001). For women undergoing dobutamine stress, 5-year survival was 95, 89, and 86.6% for those with 0, 1, and 2-3 vessel ischaemia (P < 0.0001). Exercising men had a 2.0-fold higher risk at every level of worsening ischaemia (P < 0.0001). Significantly worsening cardiac survival was noted for the 1568 men undergoing dobutamine stress echocardiography (P < 0.0001); no ischaemia was associated with 92% 5-year survival as compared with death rates of &GE; 16% for men with ischaemia on dobutamine stress echocardiography (P < 0.0001). Conclusion Echocardiographic measures of inducible wall motion abnormalities and global and regional left ventricutar function are highly predictive of long-term outcome for women and men alike.
Resumo:
Background Cardiac disease is the principal cause of death in patients with chronic kidney disease (CKD). Ischemia at dobutamine stress echocardiography (DSE) is associated with adverse events in these patients. We sought the efficacy of combining clinical risk evaluation with DSE. Methods We allocated 244 patients with CKD (mean age 54 years, 140 men, 169 dialysis-dependent at baseline) into low- and high-risk groups based on two disease-specific scores and the Framingham risk model. All underwent DSE and were further stratified according to DSE results. Patients were followed over 20 +/- 14 months for events (death, myocardial infarction, acute coronary syndrome). Results There were 49 deaths and 32 cardiac events. Using the different clinical scores, allocation of high risk varied from 34% to 79% of patients, and 39% to 50% of high-risk patients had an abnormal DSE. In the high-risk groups, depending on the clinical score chosen, 25% to 44% with an abnormal DSE had a cardiac event, compared with 8% to 22% with a.normal DSE. Cardiac events occurred in 2.0%, 3.1 %, and 9.7% of the low-risk patients, using the two disease-specific and Framingham scores, respectively, and DSE results did not add to risk evaluation in this subgroup. Independent DSE predictors of cardiac events were a lower resting diastolic blood pressure, angina during the test, and the combination of ischemia with resting left ventricular dysfunction. Conclusion In CKD patients, high-risk findings by DSE can predict outcome. A stepwise strategy of combining clinical risk scores with DSE for CAD screening in CKD reduces the number of tests required and identifies a high-risk subgroup among whom DSE results more effectively stratify high and low risk.