19 resultados para DoS-resistant Protocol, SSL and HIP Model in CPN, CPN Simulation and Verification

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context and Objective: Hip fracture is partially genetically determined. The present study was designed to examine the contributions of vitamin D receptor (VDR) and collagen I alpha 1 (COLIA1) genotypes to the liability to hip fracture in postmenopausal women. Design: The study was designed as a prospective population-based cohort investigation. Subjects: Six hundred seventy-seven postmenopausal women of Caucasian background, aged 70 +/- 7 yr (mean +/- SD), have been followed for up to 14 yr. Sixty-nine women had sustained a hip fracture during the period. Main Outcome: Atraumatic hip fractures were prospectively identified through radiologists' reports. Bone mineral density (BMD) at the hip and lumbar spine was measured by dual-energy x-ray absorptiometry. Genotypes: The TaqI and SpI COLIA1 polymorphisms of the VDR and COLIA1 genes were determined. Using the Single Nucleotide Polymorphism database, VDR TT, Tt, and tt genotypes were coded as TT, TC, and CC, whereas COLIA1 SS, Ss, and ss were coded as GG, GT, and TT. Results: Women with VDR CC genotype (16% prevalence) and COLIA1 TT genotype (5% prevalence) had an increased risk of hip fracture [odds ratio (OR) associated with CC, 2.6; 95% confidence interval (CI), 1.2-5.3; OR associated with TT, 3.8; 95% CI, 1.3-10.8] after adjustment for femoral neck BMD (OR, 3.4 per SD; 95% CI, 2.3-5.0) and age (OR, 1.4 per 5 yr; 95% CI, 1.1-1.7). Approximately 20 and 12% of the liability to hip fracture was attributable to the presence of the CC genotype and TT genotype, respectively. Conclusion: The VDR CC genotype and COLIA1 TT genotype were associated with increased hip fracture risk in Caucasian women, and this association was independent of BMD and age.