100 resultados para Dna Probes
em University of Queensland eSpace - Australia
Resumo:
Six Burkholderia solanacearum (formerly Pseudomonas solanacearum) genomic DNA fragments were isolated, using RAPD techniques and cloning, from the three genetically diverse strains: ACH092 (Biovar 4), ACH0158 (Biovar 2) and ACH0171 (Biovar 3) (1). One of these cloned fragments was selected because it was present constantly in all bacterial strains analysed. The remaining five clones were selected because Southern hybridisation revealed that each showed partial or complete specificity towards the strain of origin. A seventh genomic fragment showing a strain-specific distribution in Southern hybridisations was obtained by differential restriction, hybridisation and cloning of genomic DNA. Each of these clones was sequenced and primers to amplify the insert were designed. When DNA from the strain of origin was used as template, PCR amplification for each of these fragments yielded a single band on gel analysis. One pair of primers amplified the species-constant fragment of 281 bp from DNA of all B. solanacearum strains investigated, from DNA of the closely related bacterium which causes ''blood disease'' of banana (BDB) and in P. syzigii. The sensitivity of detection of B. solanacearum using these ubiquitous primers was between 1.3 and 20 bacterial cells. The feasibility and reliability of a PCR approach to detection and identification of B. solanacearum was tested in diverse strains of the bacterium in several countries and laboratories.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
A sensitive, specific polymerase chain reaction-based assay was developed for the detection of the causal agent of ratoon stunting disease of sugarcane, Clavibacter xyli subsp. xyli. This assay uses oligonucleotide primers derived from the internal transcribed spacer region between the 16S and 23S rRNA genes of the bacterial rRNA operon. The assay is specific for C. xyli subsp. xyli and does not produce an amplification product from the template of the closely related bacterium C. xyli subsp. cynodontis, nor from other bacterial species. The assay was successfully applied to the detection of C. xyli subsp. xyli in fibrovascular fluid extracted from sugarcane and was sensitive to approximately 22 cells per PCR assay. A multiplex PCR test was also developed which identified and differentiated C. xyli subsp. xyli and C. xyli subsp. cynodontis in a single PCR assay.
Resumo:
Descriptions of the three sibling species of the Anopheles farauti complex in Australia, A. farauti Laveran (formerly A. farauti No. 1), A. hinesorum Schmidt sp.n. (formerly A. farauti No. 2) and A. torresiensis Schmidt sp.n. (formerly A. farauti No. 3) are provided. These species form a part of the punctulatus group, which contains the major malaria vectors in the southwest Pacific. Morphological markers are described for adult females, fourth instar larvae and pupae which identify most specimens, and are presented in keys.
Resumo:
Primers and DNA probes designed for use in the specific detection of the paramyxean parasites Marteilia sydneyi and Marteilia refringens were tested for their potential to cross-react with closely related species in Polymerase Chain Reaction (PCR) and in situ hybridization. PCR primers and a DNA probe designed within the ITS1 rRNA of M. sydneyi were specific for M. sydneyi when compared with related species of Marteilia and Marteilioides. PCR primers designed within the 18S rRNA of M. refringens were specific in the detection of this species in PCR while a DNA probe (named Smart 2) designed on the same gene cross-reacted with M. sydneyi in tissue sections of Saccostrea glomerata as well as Marteilioides sp. infecting Striostrea mytiloides. Though not species specific, the Smart 2 probe provided a stronger signal in detection of all stages of M. sydneyi than the ITS1 probe. The ITS probe is proposed for use as a confirmatory diagnostic too] for M. sydneyi.
Resumo:
DNA probes were used in in situ hybridisation on histological sections of oysters exposed for defined intervals to Marteilia sydneyi infection to reveal the early development of the parasite in the oyster host, Saccostrea glomerata. The initial infective stages enter through the palps and gills whereupon extrasporogonic proliferation results in the liberation of cells into surrounding connective tissue and haemolymph spaces. Following systemic dissemination, the parasite infiltrates the digestive gland and becomes established as a nurse cell beneath the epithelial cells ill a digestive tubule. Here, cell-within-cell proliferation results in the eventual liberation of daughter cells from the nurse cell into spaces between adjacent epithelial cells. None of these stages had previously been described. Proliferation is associated with host responses, including haemocytic infiltration of the connective tissue and diapedesis across tubule epithelia. The responses cease as sporogenesis begins. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Mosquito collections were made throughout the mainland of Papua New Guinea to identify the members of the Anopheles punctulatus group present and to determine their distribution. Identification was made using morphology, DNA hybridization, and polymerase chain reaction (PCR)-RFLP analysis. Nine members of the group were identified: An. farauti s.s. Laveran, An.farauti 2, An. koliensis Owen, and An. punctulatus Donitz, were common and widespread; An. farauti 4 was restricted to the north of the central ranges where it was common; An. farauti 6 was found only in the highlands above 1,000 m; and An. farauti 3, An. sp. near punctulatus and An. clowi Rozeboom & Knight were uncommon and had restricted distributions. Identification of An. koliensis and An. punctulatus using proboscis morphology was found to be unreliable wherever An. farauti 4 occurred. The distribution and dispersal of the members of the An. punctulatus group is discussed in regard to climate, larval habitats, distance from the coast, elevation, and proximity to human habitation.
Resumo:
The members of the Anopheles punctulatus group are major vectors of malaria and Bancroftian filariasis in the southwest Pacific region. The group is comprised of 12 cryptic species that require DNA-based tools for species identification. From 1984 to 1998 surveys were carried out in northern Australia, Papua New Guinea and on islands in the southwest Pacific to determine the distribution of the A. punctulatus group. The results of these surveys have now been completed and have generated distribution data from more than 1500 localities through this region. Within this region several climatic and geographical barriers were identified that restricted species distribution and gene flow between geographic populations. This information was further assessed in light of a molecular phylogeny derived from the ssrDNA (18S). Subsequently, hypotheses have been generated on the evolution and distribution of the group so that future field and laboratory studies may be approached more systematically. This study suggested that the ability for widespread dispersal was found to have appeared independently in species that show niche-specific habitat preference (Anopheles farauti s.s. and A. punctulatus) and conversely in species that showed diversity in their larval habitat (Anopheles farauti 2). Adaptation to the monsoonal climate of northern Australia and southwest Papua New Guinea was found to have appeared independently in A. farauti s.s., A. farauti 2 and Anopheles farauti 3. Shared or synapomorphic characters were identified as saltwater tolerance (A. farauti s.s. and Anopheles farauti 7) and elevational affinities above 1500 m (Anopheles farauti 5, Anopheles farauti 6 and A. farauti 2). (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
Chromogenic (CISH) and fluorescent ( FISH) in situ hybridization have emerged as reliable techniques to identify amplifications and chromosomal translocations. CISH provides a spatial distribution of gene copy number changes in tumour tissue and allows a direct correlation between copy number changes and the morphological features of neoplastic cells. However, the limited number of commercially available gene probes has hindered the use of this technique. We have devised a protocol to generate probes for CISH that can be applied to formalin-fixed, paraffin-embedded tissue sections (FFPETS). Bacterial artificial chromosomes ( BACs) containing fragments of human DNA which map to specific genomic regions of interest are amplified with phi 29 polymerase and random primer labelled with biotin. The genomic location of these can be readily confirmed by BAC end pair sequencing and FISH mapping on normal lymphocyte metaphase spreads. To demonstrate the reliability of the probes generated with this protocol, four strategies were employed: (i) probes mapping to cyclin D1 (CCND1) were generated and their performance was compared with that of a commercially available probe for the same gene in a series of 10 FFPETS of breast cancer samples of which five harboured CCND1 amplification; (ii) probes targeting cyclin-dependent kinase 4 were used to validate an amplification identified by microarray-based comparative genomic hybridization (aCGH) in a pleomorphic adenoma; (iii) probes targeting fibroblast growth factor receptor 1 and CCND1 were used to validate amplifications mapping to these regions, as defined by aCGH, in an invasive lobular breast carcinoma with FISH and CISH; and (iv) gene-specific probes for ETV6 and NTRK3 were used to demonstrate the presence of t(12; 15)(p12; q25) translocation in a case of breast secretory carcinoma with dual colour FISH. In summary, this protocol enables the generation of probes mapping to any gene of interest that can be applied to FFPETS, allowing correlation of morphological features with gene copy number.
Resumo:
A technique based on the polymerase chain reaction (PCR) for the specific detection of Phytophthora medicaginis was developed using nucleotide sequence information of the ribosomal DNA (rDNA) regions. The complete IGS 2 region between the 5 S gene of one rDNA repeat and the small subunit of the adjacent repeat was sequenced for P. medicaginis and related species. The entire nucleotide sequence length of the IGS 2 of P. medicaginis was 3566 bp. A pair of oligonucleotide primers (PPED04 and PPED05), which allowed amplification of a specific fragment (364 bp) within the IGS 2 of P. medicaginis using the PCR, was designed. Specific amplification of this fragment from P. medicaginis was highly sensitive, detecting template DNA as low as 4 ng and in a host-pathogen DNA ratio of 1000000:1. Specific PCR amplification using PPED04 and PPED05 was successful in detecting P. medicaginis in lucerne stems infected under glasshouse conditions and field infected lucerne roots. The procedures developed in this work have application to improved identification and detection of a wide range of Phytophthora spp. in plants and soil.
Resumo:
Encapsidation of circular DNA by papillomavirus capsid protein was investigated in Cos-1 cells. Plasmids carrying both an SV40 origin of replication (or) and an E. coli on were introduced into Cos-1 cells by DNA transfection. PV capsid proteins were supplied in trans by recombinant vaccinia viruses. Pseudovirions were purified from infected cells and their packaged DNA was extracted and used to transform E. coil as an indication of packaging efficacy. VLPs assembled from BPV-1 L1 alone packaged little plasmid DNA, whereas VLPs assembled from BPV-1 L1+L2 packaged plasmid DNA at least 50 times more effectively. BPV-1 L1+L2 VLPs packaged a plasmid containing BPV-1 sequence 8.2 +/- 3.1 times more effectively than a plasmid without BW sequences. Using a series of plasmid constructs comprising a core BPV-1 sequence and spacer DNA it was demonstrated that BW VLPs could accommodate a maximum of about 10.2 kb of plasmid DNA, and that longer closed circular DNA was truncated to produce less dense virions with shorter plasmid sequences. The present study suggests that packaging of genome within PV virions involves interaction of L2 protein with specific DNA sequences, and demonstrates that PV pseudovirions have the potential to be used as DNA delivery vectors for plasmids of up to 10.2 kb. (C) 1998 Academic Press.
Resumo:
Development of CD8 alpha beta CTL epitope-based vaccines requires an effective strategy capable of co-delivering large numbers of CTL epitopes, Here we describe a DNA plasmid encoding a polyepitope or polytope protein, which contained multiple contiguous minimal murine CTL epitopes, Mice vaccinated with this plasmid made MHC-restricted CTL responses to each of the epitopes, and protective CTL were demonstrated in recombinant vaccinia virus, influenza virus, and tumor challenge models, CTL responses generated by polytope DNA plasmid vaccination lasted for 1 yr, could be enhanced by co-delivering a gene for granulocyte-macrophage CSF, and appeared to be induced in the absence of CD4 T cell-mediated help, The ability to deliver large numbers of CTL epitopes using relatively small polytope constructs and DNA vaccination technology should find application in the design of human epitope-based CTL vaccines, in particular in vaccines against EBV, HIV, and certain cancers.
Resumo:
The carboxy terminal octapeptide of cholecystokinin (CCK8) is a hormone that binds high affinity receptors in a number of tissues including pancreas and pancreatic tumours. As part of our studies to develop effective gene therapy for the treatment of pancreatic cancers, we have investigated various gene delivery systems that depend on CCK8 receptor targeting. In this paper,we describe the synthesis of a CCK8-DNA complex designed to deliver foreign DNA to cholecystokinin receptor-positive cells. CCK8 was ligated to avidin and then complexed to linearis biotinylated DNA (pSV-CAT). The uptake of P-32-labelled CCK8-DNA complex by rat pancreatic acini was linear with time over 4 h with 65-70% of uptake inhibited by 100 nM CCK8. The complex appeared to be internalised since it could not be removed by acid wash. When administered intra-arterially, the complex was rapidly removed from the circulation with no evidence of targeted delivery to the pancreas, However, following a single intraperitoneal dose, the pancreas accumulated-5- 8% of the total administered complex by 24 h. These results suggest that peptide-dependent gene delivery to CCK receptor positive cells in vivo is feasible but, when administered directly into the circulation, diffusional barriers across the endothelium may limit distribution to peripheral tissues. Intraperitoneal administration therefore may be a useful alternative for targeting the pancreas.