31 resultados para Dittmer, Jason
em University of Queensland eSpace - Australia
Resumo:
Background. Limited information is available regarding the impact of childhood tumour on the cerebral hemispheres and supratentorial cranial fossa. However, a recent study found that children managed for a tumour located in this region may demonstrate reduced general language abilities. However, the indirect or direct impact of a tumour in this region on higher-level language abilities in childhood is at present largely unknown. Materials and methods. The present study examined the higher language and phonological awareness abilities of five children treated for supratentorial tumour ranging in age from seven to fourteen years in age. Assessments included measures of receptive and expressive semantic abilities, inferencing, figurative language, and problem solving, as well as a comprehensive pre-literacy test. Results. As a group, reductions were evident in problem solving, and in the ability to receive and decode content of high-level language when compared to a group of age- and gender-matched peers. At an individual level, only two of five children managed for supratentorial tumour demonstrated language deficits. These two cases were noted to be the same children previously identified as also having general language deficits. More widespread findings were noted in phonological awareness, with four of the five children previously managed for supratentorial tumour demonstrating weaknesses in one or more areas. Conclusions. Findings demonstrated that weaknesses in general language ability in children managed for supratentorial tumour may indicate higher-level language difficulties. Language abilities beyond general measures of language should be monitored, as well as long-term consideration of phonological awareness abilities in this population.
Resumo:
Previous work on generating state machines for the purpose of class testing has not been formally based. There has also been work on deriving state machines from formal specifications for testing non-object-oriented software. We build on this work by presenting a method for deriving a state machine for testing purposes from a formal specification of the class under test. We also show how the resulting state machine can be used as the basis for a test suite developed and executed using an existing framework for class testing. To derive the state machine, we identify the states and possible interactions of the operations of the class under test. The Test Template Framework is used to formally derive the states from the Object-Z specification of the class under test. The transitions of the finite state machine are calculated from the derived states and the class's operations. The formally derived finite state machine is transformed to a ClassBench testgraph, which is used as input to the ClassBench framework to test a C++ implementation of the class. The method is illustrated using a simple bounded queue example.
Resumo:
Recombinant protein production in bacteria is efficient except that insoluble inclusion bodies form when some gene sequences are expressed. Such proteins must undergo renaturation, which is an inefficient process due to protein aggregation on dilution from concentrated denaturant. In this study, the protein-protein interactions of eight distinct inclusion-body proteins are quantified, in different solution conditions, by measurement of protein second virial coefficients (SVCs). Protein solubility is shown to decrease as the SVC is reduced (i.e., as protein interactions become more attractive). Plots of SVC versus denaturant concentration demonstrate two clear groupings of proteins: a more aggregative group and a group having higher SVC and better solubility. A correlation of the measured SVC with protein molecular weight and hydropathicity, that is able to predict which group each of the eight proteins falls into, is presented. The inclusion of additives known to inhibit aggregation during renaturation improves solubility and increases the SVC of both protein groups. Furthermore, an estimate of maximum refolding yield (or solubility) using high-performance liquid chromatography was obtained for each protein tested, under different environmental conditions, enabling a relationship between yield and SVC to be demonstrated. Combined, the results enable an approximate estimation of the maximum refolding yield that is attainable for each of the eight proteins examined, under a selected chemical environment. Although the correlations must be tested with a far larger set of protein sequences, this work represents a significant move beyond empirical approaches for optimizing renaturation conditions. The approach moves toward the ideal of predicting maximum refolding yield using simple bioinformatic metrics that can be estimated from the gene sequence. Such a capability could potentially screen, in silico, those sequences suitable for expression in bacteria from those that must be expressed in more complex hosts. (C) 2004 Wiley Periodicals, Inc.