31 resultados para Distributed parameter
em University of Queensland eSpace - Australia
Resumo:
This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Many granulation plants operate well below design capacity, suffering from high recycle rates and even periodic instabilities. This behaviour cannot be fully predicted using the present models. The main objective of the paper is to provide an overview of the current status of model development for granulation processes and suggest future directions for research and development. The end-use of the models is focused on the optimal design and control of granulation plants using the improved predictions of process dynamics. The development of novel models involving mechanistically based structural switching methods is proposed in the paper. A number of guidelines are proposed for the selection of control relevant model structures. (C) 2002 Published by Elsevier Science B.V.
Resumo:
This paper addresses robust model-order reduction of a high dimensional nonlinear partial differential equation (PDE) model of a complex biological process. Based on a nonlinear, distributed parameter model of the same process which was validated against experimental data of an existing, pilot-scale BNR activated sludge plant, we developed a state-space model with 154 state variables in this work. A general algorithm for robustly reducing the nonlinear PDE model is presented and based on an investigation of five state-of-the-art model-order reduction techniques, we are able to reduce the original model to a model with only 30 states without incurring pronounced modelling errors. The Singular perturbation approximation balanced truncating technique is found to give the lowest modelling errors in low frequency ranges and hence is deemed most suitable for controller design and other real-time applications. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper addresses advanced control of a biological nutrient removal (BNR) activated sludge process. Based on a previously validated distributed parameter model of the BNR activated sludge process, we present robust multivariable controller designs for the process, involving loop shaping of plant model, robust stability and performance analyses. Results from three design case studies showed that a multivariable controller with stability margins of 0.163, 0.492 and 1.062 measured by the normalised coprime factor, multiplicative and additive uncertainties respectively give the best results for meeting performance robustness specifications. The controller robustly stabilises effluent nutrients in the presence of uncertainties with the behaviour of phosphorus accumulating organisms as well as to effectively attenuate major disturbances introduced as step changes. This study also shows that, performance of the multivariable robust controller is superior to multi-loops SISO PI controllers for regulating the BNR activated sludge process in terms of robust stability and performance and controlling the process using inlet feed flowrate is infeasible. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The development of a strong, active granular sludge bed is necessary for optimal operation of upflow anaerobic sludge blanket reactors. The microbial and mechanical structure of the granules may have a strong influence on desirable properties such as growth rate, settling velocity and shear strength. Theories have been proposed for granule microbial structure based on the relative kinetics of substrate degradation, but contradict some observations from both modelling and microscopic studies. In this paper, the structures of four granule types were examined from full-scale UASB reactors, treating wastewater from a cannery, a slaughterhouse, and two breweries. Microbial structure was determined using fluorescence in situ hybridisation probing with 16S rRNA-directed oligonucleotide probes, and superficial structure and microbial density (volume occupied by cells and microbial debris) assessed using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The granules were also modelled using a distributed parameter biofilm model, with a previously published biochemical model structure, biofilm modelling approach, and model parameters. The model results reflected the trophic structures observed, indicating that the structures were possibly determined by kinetics. Of particular interest were results from simulations of the protein grown granules, which were predicted to have slow growth rates, low microbial density, and no trophic layers, the last two of which were reflected by microscopic observations. The primary cause of this structure, as assessed by modelling, was the particulate nature of the wastewater, and the slow rate of particulate hydrolysis, rather than the presence of proteins in the wastewater. Because solids hydrolysis was rate limiting, soluble substrate concentrations were very low (below Monod half saturation concentration), which caused low growth rates. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Three main models of parameter setting have been proposed: the Variational model proposed by Yang (2002; 2004), the Structured Acquisition model endorsed by Baker (2001; 2005), and the Very Early Parameter Setting (VEPS) model advanced by Wexler (1998). The VEPS model contends that parameters are set early. The Variational model supposes that children employ statistical learning mechanisms to decide among competing parameter values, so this model anticipates delays in parameter setting when critical input is sparse, and gradual setting of parameters. On the Structured Acquisition model, delays occur because parameters form a hierarchy, with higher-level parameters set before lower-level parameters. Assuming that children freely choose the initial value, children sometimes will miss-set parameters. However when that happens, the input is expected to trigger a precipitous rise in one parameter value and a corresponding decline in the other value. We will point to the kind of child language data that is needed in order to adjudicate among these competing models.
Resumo:
Wolbachia are intracellular microorganisms that form maternally-inherited infections within numerous arthropod species. These bacteria have drawn much attention, due in part to the reproductive alterations that they induce in their hosts including cytoplasmic incompatibility (CI), feminization and parthenogenesis. Although Wolbachia's presence within insect reproductive tissues has been well described, relatively few studies have examined the extent to which Wolbachia infects other tissues. We have examined Wolbachia tissue tropism in a number of representative insect hosts by western blot, dot blot hybridization and diagnostic PCR. Results from these studies indicate that Wolbachia are much more widely distributed in host tissues than previously appreciated. Furthermore, the distribution of Wolbachia in somatic tissues varied between different Wolbachia/host associations. Some associations showed Wolbachia disseminated throughout most tissues while others appeared to be much more restricted, being predominantly limited to the reproductive tissues. We discuss the relevance of these infection patterns to the evolution of Wolbachia/host symbioses and to potential applied uses of Wolbachia.
Resumo:
Power system real time security assessment is one of the fundamental modules of the electricity markets. Typically, when a contingency occurs, it is required that security assessment and enhancement module shall be ready for action within about 20 minutes’ time to meet the real time requirement. The recent California black out again highlighted the importance of system security. This paper proposed an approach for power system security assessment and enhancement based on the information provided from the pre-defined system parameter space. The proposed scheme opens up an efficient way for real time security assessment and enhancement in a competitive electricity market for single contingency case
Resumo:
A new two-parameter integrable model with quantum superalgebra U-q[gl(3/1)] symmetry is proposed, which is an eight-state fermions model with correlated single-particle and pair hoppings as well as uncorrelated triple-particle hopping. The model is solved and the Bethe ansatz equations are obtained.
Resumo:
The tissue distribution kinetics of a highly bound solute, propranolol, was investigated in a heterogeneous organ, the isolated perfused limb, using the impulse-response technique and destructive sampling. The propranolol concentration in muscle, skin, and fat as well as in outflow perfusate was measured up to 30 min after injection. The resulting data were analysed assuming (1) vascular, muscle, skin and fat compartments as well mixed (compartmental model) and (2) using a distributed-in-space model which accounts for the noninstantaneous intravascular mixing and tissue distribution processes but consists only of a vascular and extravascular phase (two-phase model). The compartmental model adequately described propranolol concentration-time data in the three tissue compartments and the outflow concentration-time curve (except of the early mixing phase). In contrast, the two-phase model better described the outflow concentration-time curve but is limited in accounting only for the distribution kinetics in the dominant tissue, the muscle. The two-phase model well described the time course of propranolol concentration in muscle tissue, with parameter estimates similar to those obtained with the compartmental model. The results suggest, first that the uptake kinetics of propranolol into skin and fat cannot be analysed on the basis of outflow data alone and, second that the assumption of well-mixed compartments is a valid approximation from a practical point of view las, e.g., in physiological based pharmacokinetic modelling). The steady-state distribution volumes of skin and fat were only 16 and 4%, respectively, of that of muscle tissue (16.7 ml), with higher partition coefficient in fat (6.36) than in skin (2.64) and muscle (2.79. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.
Resumo:
The problem of the negative values of the interaction parameter in the equation of Frumkin has been analyzed with respect to the adsorption of nonionic molecules on energetically homogeneous surface. For this purpose, the adsorption states of a homologue series of ethoxylated nonionic surfactants on air/water interface have been determined using four different models and literature data (surface tension isotherms). The results obtained with the Frumkin adsorption isotherm imply repulsion between the adsorbed species (corresponding to negative values of the interaction parameter), while the classical lattice theory for energetically homogeneous surface (e.g., water/air) admits attraction alone. It appears that this serious contradiction can be overcome by assuming heterogeneity in the adsorption layer, that is, effects of partial condensation (formation of aggregates) on the surface. Such a phenomenon is suggested in the Fainerman-Lucassen-Reynders-Miller (FLM) 'Aggregation model'. Despite the limitations of the latter model (e.g., monodispersity of the aggregates), we have been able to estimate the sign and the order of magnitude of Frumkin's interaction parameter and the range of the aggregation numbers of the surface species. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
We explore the task of optimal quantum channel identification and in particular, the estimation of a general one-parameter quantum process. We derive new characterizations of optimality and apply the results to several examples including the qubit depolarizing channel and the harmonic oscillator damping channel. We also discuss the geometry of the problem and illustrate the usefulness of using entanglement in process estimation.
Resumo:
The concept of parameter-space size adjustment is pn,posed in order to enable successful application of genetic algorithms to continuous optimization problems. Performance of genetic algorithms with six different combinations of selection and reproduction mechanisms, with and without parameter-space size adjustment, were severely tested on eleven multiminima test functions. An algorithm with the best performance was employed for the determination of the model parameters of the optical constants of Pt, Ni and Cr.