11 resultados para Distillation.
em University of Queensland eSpace - Australia
Resumo:
Flavoring is still a difficult problem in the snack food industry because of the high volatility of flavors and their instability under extrusion condition. Although postextrusion added flavor is commonly used, it suffers from numerous drawbacks. Flavor losses at the exit die because flash distillation is a critical issue and can only be minimized by controlling the pressure difference at the end of the barrel and the exit die, which, however, affects other desirable product characteristics. Residence time distribution (RTD), as an important intermediate process variable that among others controls the extent of reactions, can also be a major determinant on flavor retention during extrusion. Encapsulation of flavors is a promising alternative to enhance the retention of preextrusion added flavor during extrusion. The capsules should withstand high temperature and shear conditions in, the extruder barrel. Various encapsulation techniques and their encapsulated flavor characteristics are illustrated.
Resumo:
Fluorescence and confocal laser scanning microscopy were explored to investigate the movement and localization of mineral oils in citrus. In a laboratory experiment, fluorescence microscopy observation indicated that when a 'narrow' distillation fraction of an nC23 horticultural mineral oil was applied to adaxial and opposing abaxial leaf surfaces of potted orange [Citrus x aurantium L. (Sapindales: Rutaceae)] trees, oil penetrated steadily into treated leaves and, subsequently, moved to untreated petioles of the leaves and adjacent untreated stems. In another experiment, confocal laser scanning microscopy was used to visualize the penetration into, and the subsequent cellular distribution of, an nC24 agricultural mineral oil in C. trifoliata L. seedlings. Oil droplets penetrated or diffused into plants via both stomata and the cuticle of leaves and stems, and then moved within intercellular spaces and into various cells including phloem and xylem. Oil accumulated in droplets in intercellular spaces and within cells near the cell membrane. Oil entered cells without visibly damaging membranes or causing cell death. In a field experiment with mature orange trees, droplets of an nC23 horticultural mineral oil were observed, by fluorescence microscopy, in phloem sieve elements in spring flush growth produced 4-5 months and 16-17 months after the trees were sprayed with oil. These results suggest that movement of mineral oil in plants is both apoplastic via intercellular spaces and symplastic via plasmodesmata. The putative pattern of the translocation of mineral oil in plants and its relevance to oil-induced chronic phytotoxicity are discussed.
Resumo:
Ginger oil, obtained by steam distillation of the rhizome of Zingiber officinale Roscoe, is used in the beverage and fragrance industries. Ginger oil displays considerable compositional diversity, but is typically characterized by a high content of sesquiterpene hydrocarbons, including zingiberene, arcurcumene, beta-bisabolene, and beta-sesquiphellandrene. Australian ginger oil has a reputation for possessing a particular lemony aroma, due to its high content of the isomers neral and geranial, often collectively referred to as citral. Fresh rhizomes of 17 clones of Australian ginger, including commercial cultivars and experimental tetraploid clones, were steam distilled 7 weeks post-harvest, and the resulting oils were analyzed by GC-MS. The essential oils of 16 of the 17 clones, including the tetraploid clones and their parent cultivar, were found to be of substantially similar composition. These oils were characterized by very high citral levels (51-71%) and relatively low levels of the sesquiterpene hydrocarbons typical of ginger oil. The citral levels of most of these oils exceeded those previously reported for ginger oils. The neral-to-geranial ratio was shown to be remarkably constant (0.61 +/- 0.01) across all 17 clones. One clone, the cultivar Jamaican, yielded oil with a substantially different composition, lower citral content and higher levels of sesquiterpene hydrocarbons. Because this cultivar also contains significantly higher concentrations of pungent gingerols, it possesses unique aroma and flavor characteristics, which should be of commercial interest.
Resumo:
The problem of distributed compression for correlated quantum sources is considered. The classical version of this problem was solved by Slepian and Wolf, who showed that distributed compression could take full advantage of redundancy in the local sources created by the presence of correlations. Here it is shown that, in general, this is not the case for quantum sources, by proving a lower bound on the rate sum for irreducible sources of product states which is stronger than the one given by a naive application of Slepian-Wolf. Nonetheless, strategies taking advantage of correlation do exist for some special classes of quantum sources. For example, Devetak and Winter demonstrated the existence of such a strategy when one of the sources is classical. Optimal nontrivial strategies for a different extreme, sources of Bell states, are presented here. In addition, it is explained how distributed compression is connected to other problems in quantum information theory, including information-disturbance questions, entanglement distillation and quantum error correction.
Resumo:
We use robust semidefinite programs and entanglement witnesses to study the distillability of Werner states. We perform exact numerical calculations that show two-undistillability in a region of the state space, which was previously conjectured to be undistillable. We also introduce bases that yield interesting expressions for the distillability witnesses and for a tensor product of Werner states with an arbitrary number of copies.
Resumo:
Public statues that commemorate the lives and achievements of athletes are pervasive and influential forms of social memory in Western societies. Despite this important nexus between cultural practice and history making, there is a relative void of critical studies of statuary dedicated to athletes. This article will attempt to contribute to a broader understanding in this area by considering a bronze statue of Duke Paoa Kahanamoku, the Hawaiian Olympian, swimmer and surfer, at Waikīkī, Hawaii. This prominent monument demonstrates the processes of remembering and forgetting that are integral to acts of social memory. In this case, Kahanamoku's identity as a surfer is foregrounded over his legacy as a swimmer. The distillation and use of Kahanamoku's memory in this representation is enmeshed in deeper cultural forces about Hawaii's identity. Competing meanings of the statue's symbolism indicate its role as a 'hollow icon', and illustrate the way that apparently static objects representing the sporting past are in fact objects of the present.
Resumo:
In this article, we propose a framework, namely, Prediction-Learning-Distillation (PLD) for interactive document classification and distilling misclassified documents. Whenever a user points out misclassified documents, the PLD learns from the mistakes and identifies the same mistakes from all other classified documents. The PLD then enforces this learning for future classifications. If the classifier fails to accept relevant documents or reject irrelevant documents on certain categories, then PLD will assign those documents as new positive/negative training instances. The classifier can then strengthen its weakness by learning from these new training instances. Our experiments’ results have demonstrated that the proposed algorithm can learn from user-identified misclassified documents, and then distil the rest successfully.