27 resultados para Dissolved Cu
em University of Queensland eSpace - Australia
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The aim of the present work was to increase the electrical conductivity and strength of the Cu-0.7wt%Cr-0.3wt%Fe alloy through selective minor additions (less than or equal to0.15 wt%) of elements expected to promote precipitation of dissolved Fe: Ti, B, P, Ni & Y. Such quaternary alloys with reduced Fe in solid solution would be expected to have properties equivalent to or better than those of the Cu-1%Cr reference alloy (Alloy Z). The investigation showed that none of the trace element additions significantly improved the size of the age hardening response or the peak aged electrical conductivity of Alloy A, although further work is required on the influence of Ti. Additions of P and B were detrimental. Other trace additions had little or no effect apart from causing some slight changes to the precipitation kinetics. The mechanical properties of the Cu-0.7%Cr-0.3%Fe alloy made with less expensive high carbon ferrochrome were found to be inferior to those of the equivalent alloy made with low carbon ferrochrome. (C) 2001 Kluwer Academic Publishers.
Resumo:
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥ 1.7 µM (corresponding to 90 % maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.
Resumo:
The low temperature electronic spectrum of Cu(II) doped Cs2ZrCl6 is reported. It is found that Cu(II) is incorporated as the square planar copper tetrachloride ion, CuCl42-, which substitutes at the Zr(IV) site in the Cs2ZrCl6 lattice. There is a complete absence of axial coordination. The optical spectrum shows vibronic structure with peak widths as small as 8 cm(-1), far narrower than previously seen for this ion. The energy of the observed transitions and the Franck-Condon intensity pattern suggest that there is a substantial relaxation of the host lattice about the impurity ion. The relative intensity of the magnetic dipole component of the bands appears to be considerably greater than for pure copper(II) compounds containing the CuCl42- ion. (C) 1998 Elsevier Science B.V. All rights reserved.
Resumo:
The relative contribution of dissolved nitrogen (ammonium and dissolved free amino acids DFAAs) to the nitrogen budget of the reef-building coral Pocillopora damicornis was assessed for colonies growing on control and ammonium-enriched reefs at One Tree Island (southern Great Barrier Reef) during the ENCORE (Enrichment of Nutrient on Coral Reef; 1993 to 1996) project. P. damicornis acquired ammonium at rates of between 5.1 and 91.8 nmol N cm(-2) h(-1) which were not affected by nutrient treatment except in the case of one morph. In this case, uptake rates decreased from 80.5 to 42.8 nmol cm(-2) h(-1) (P < 0.05) on exposure to elevated ammonium over 12 mo. The presence or absence of light during measurement did not influence the uptake of ammonium ions. Nitrogen budgets revealed that the uptake of ammonium from concentrations of 0.11 to 0.13 mu M could completely satisfy the demand of growing P. damicornis for new nitrogen. P. damicornis also took up DFAAs at rates ranging from 4.9 to 9.8 nmol N cm(-2) h(-1). These rates were higher in the dark than in the light (9.0 vs 5.1 nmol m(-2) h(-1), P < 0.001). Uptake rates were highest for the amino acids serine, arginine and alanine, and lowest for tyrosine. DFAA concentrations within the ENCORE microatolls that received ammonium were undetectable, whereas they ranged up to 100 nM within the control microatolls. The contribution of DFAAs to the nitrogen budget of P. damicornis constituted only a small fraction of the nitrogen potentially contributed by ammonium under field conditions. Even at the highest field concentrations measured during this study, DFAAs could contribute only similar or equal to 11.3% of the nitrogen demand of P. damicornis. This contribution, however, may be an important source of nitrogen when other sources such as ammonium are scarce or during periods when high concentrations of DFAAs become sporadically available (e.g. cell breakage during fish-grazing).
Resumo:
The role of dissolved free amino acids (DFAA) in nitrogen and energy budgets was investigated for the giant clam, Tridacna maxima, growing under field conditions at One Tree Island, at the southern end of the Great Barrier Reef, Australia. Giant clams (121.5-143.7 mm in shell length) took up neutral, acidic and basic amino acids. The rates of net uptake of DFAA did not differ between light and dark, nor for clams growing under normal or slightly enriched ammonium concentrations. Calculations based on the net uptake concentrations typical of the maximum concentrations of DFAA found in coral reef waters (similar to 0.1 mu M)revealed that DFAA could only contribute 0.1% and 1% of the energy and nitrogen demands of giant clams, respectively. These results suggest that DFAA does not supply significant amounts of energy or nitrogen for giant clams or their symbionts.
Resumo:
Catalytic conversion of N2O to N-2 over Cu- and Co-impregnated activated carbon catalysts (Cu/AC and Co/AC) was investigated. Catalytic activity measurements were carried out in a fixed-bed flow reactor at atmospheric pressure. The catalysts were characterized by N-2 adsorption, X-ray diffraction (XRD) and thermogravimetric analysis (TGA). This study aimed to provide insights into the following aspects: the metal dispersion, changes in pore structure, influence of catalyst loading on reaction, and reaction mechanism. Increasing loading of Co or Cu led to decreasing dispersion, but 20 wt % loading was an upper limit for optimal activities in both cases, with too high loading causing sintering of metal. Co exhibited a relatively better dispersion than Cu. Impregnation of metal led to a large decrease in surface area and pore volume, especially for 30 wt % of loading. 20 wt % of loading has proved to be the optimum for both Cu and Co, which shows the highest activity. Both N2O-Co/AC and -Cu/AC reactions are based upon a redox mechanism, but the former is limited by the oxygen transfer from catalysts to carbon, while N2O chemisorption on the surface of Cu catalyst controls the latter. The removal of oxygen from cobalt promotes the activity of Co/AC, but it is beneficial for Cu/AC to keep plenty of oxygen to maintain the intermediate oxidation of copper-Cu1+. The different nature of the two catalysts and their catalytic reaction mechanisms are closely related to their different electronegativities.
Resumo:
The bis(mu-hydroxo) complex [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)](PF6)(2) (Me-2[9]aneN(2)S = N,N'-dimethyl-1-thia-4,7-diazacyclononane) results after reaction of [Cu(Me-2[9]aneN(2)S)(MeCN)] (PF6) with dioxygen at -78 degrees C in acetonitrile. The complex has been characterized by X-ray crystallography: orthorhombic, space group Pnma, with a 18.710(3), b 16.758(2), c 9.593(2) Angstrom, and Z = 4. The structure refined to a final R value of 0.051. The complex contains two copper(II) ions bridged by two hydroxo groups with Cu ... Cu 2.866(1) Angstrom. The solid-state magnetic susceptibility study reveals ferromagnetic coupling, the fitting parameters being J = +46+/-5 cm(-1), g = 2.01+/-0.01 and theta = -0.58+/-0.03 K. The frozen-solution e.p.r. spectrum in dimethyl sulfoxide is characteristic of a monomeric copper(II) ion (g(parallel to) 2.300, g(perpendicular to) 2.063; A(parallel to) 156.2 x 10(-4) cm(-1), A(perpendicular to) 9.0 x 10(-4) cm(-1)) with an N2O2 donor set. Thioether coordination to the copper(II) in solution is supported by the presence of an intense absorption assigned to a sigma(S)-->Cu-II LMCT transition at c. 34000 cm(-1). The single-crystal spectrum of [Cu-2(Me-2[9]aneN(2)S)(2)(OH)(2)] (PF6)(2) (273 K) reveals d-->d transitions at 14500 and 18300 cm(-1) and a weak pi(S)-->Cu-II charge-transfer band at approximately 25000 cm(-1).
Resumo:
We report detailed measurements of the interlayer magnetoresistance of the layered organic superconductor kappa-(BEDT-TTF)(2)Cu(SCN)(2) for temperatures down to 0.5 K and fields up to 30 T. The upper critical field is determined from the resistive transition for a wide range of temperatures and field directions. For magnetic fields parallel to the layers, the upper critical field increases approximately linearly with decreasing temperature. The upper critical field at low temperatures is compared to the Pauli paramagnetic limit, at which singlet superconductivity should be destroyed by the Zeeman splitting of the electron spins. The measured value is comparable to a value for the paramagnetic limit calculated from thermodynamic quantities but exceeds the limit calculated from BCS theory. The angular dependence of the upper critical field shows a cusplike feature for fields close to the layers, consistent with decoupled layers.
Resumo:
The crystal structures of the Tutton salts (NH4)(2)[Cu(H2O)(6)](SO4)(2), diammonium hexaaquacopper disulfate, formed with normal water and isotopically substituted (H2O)-O-18, have been determined by X-ray diffraction at 9.5 K and are very similar, with Cu-O(7) the longest of the Cu-O bonds of the Jahn-Teller distorted octahedral [Cu(H2O)(6)](2+) complex. It is known that structural differences accompany deuteration of (NH4)(2)[Cu(H2O)(6)](SO4)(2), the most dramatic of which is a switch to Cu-O(8) as the longest such bond. The present result suggests that the structural differences are associated with hydrogen-bonding effects rather than with increased mass of the water ligands affecting the Jahn-Teller coupling. The Jahn-Teller distortions and hydrogen-bonding contacts in the compounds are compared with those reported for other Tutton salts at ambient and high pressure.
Resumo:
The structures of diaqua(1,7-dioxa-4-thia-10-azacyclododecane)nickel dinitrate, [Ni(C8H17NO2S)(H2O)(2)](NO3)(2), (I), bis(nitrato-O,O')(1,4,7-trioxa-10-azacyclododecane)mercury, [Hg(NO3)(2)(C8H17NO3)], (II), and aqua(nitrato-O)(1-oxa-4,7,10-triazacyclododecane)copper nitrate, [Cu(NO3)(C8H19N3O)(H2O)]NO3, (III), reveal each macrocycle binding in a tetradentate manner. The conformations of the ligands in (I) and (III) are the same and distinct from that identified for (II). These differences are in agreement with molecular-mechanics predictions of ligand conformation as a function of metal-ion size.
Resumo:
The dendrite coherency point of Al-Si-Cu alloys was determined by thermal analysis and rheological measurement methods by performing parallel measurements at two cooling rates for aluminum alloys across a wide range of silicon and copper contents. Contrary to previous findings, the two methods yield significantly different values for the fraction solid at the dendrite coherency point. This disparity is greatest for alloys of low solute concentration. The results from this study also contradict previously reported tl ends in the effect of cooling rate on the dendritic coherency point. Consideration of the results shows that thermal analysis is not a valid technique for the measurement of coherency. Analysis of the results from rheological testing indicates that silicon concentration has a dominant effect on grain size and dendritic morphology, independent of cooling rate and copper content, and thus is the factor that determines the fraction solid at dendrite coherency for Al-Si-Cu alloys.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.
Resumo:
The influence of sodium (Na) on nucleation and growth of the Al-Si eutectic in a commercial hypoeutectic Al-Si-Cu-Mg foundry alloy has been investigated. The microstructural evolution during eutectic solidification was studied by a quenching technique. By comparing the orientation of the aluminium in the eutectic to that of the surrounding primary aluminium dendrites by EBSD, the eutectic solidification mode could be determined. The results show that the eutectic solidification starts near the mould wall and evolves with front growth opposite the thermal gradient on a macro-scale, and on a micro-scale with independent heterogeneous nucleation of eutectic grains in interdendritic spaces. Na-modified alloys therefore behave significantly differently from those modified by other elemental additions.