3 resultados para Disposal process
em University of Queensland eSpace - Australia
Resumo:
Most adverse environmental impacts result from design decisions made long before manufacturing or usage. In order to prevent this situation, several authors have proposed the application of life cycle assessment (LCA) at the very first phases of the design of a process, a product or a service. The study in this paper presents an innovative thermal drying process for sewage sludge called fry-drying, in which dewatered sludge is directly contacted in the dryer with hot recycled cooking oils (RCO) as the heat medium. Considering the practical difficulties for the disposal of these two wastes, fry-drying presents a potentially convenient method for their combined elimination by incineration of the final fry-dried sludge. An analytical comparison between a conventional drying process and the new proposed fry-drying process is reported, with reference to some environmental impact categories. The results of this study, applied at the earliest stages of the design of the process, assist evaluation of the feasibility of such system compared to a current disposal process for the drying and incineration of sewage sludge.
Resumo:
On-site wastewater treatment and dispersal systems (OWTS) are used in non-sewered populated areas in Australia to treat and dispose of household wastewater. The most common OWTS in Australia is the septic tank-soil absorption system (SAS) - which relies on the soil to treat and disperse effluent. The mechanisms governing purification and hydraulic performance of a SAS are complex and have been shown to be highly influenced by the biological zone (biomat) which develops on the soil surface within the trench or bed. Studies suggest that removal mechanisms in the biomat zone, primarily adsorption and filtering, are important processes in the overall purification abilities of a SAS. There is growing concern that poorly functioning OWTS are impacting upon the environment, although to date, only a few investigations have been able to demonstrate pollution of waterways by on-site systems. In this paper we review some key hydrological and biogeochemical mechanisms in SAS, and the processes leading to hydraulic failure. The nutrient and pathogen removal efficiencies in soil absorption systems are also reviewed, and a critical discussion of the evidence of failure and environmental and public health impacts arising from SAS operation is presented. Future research areas identified from the review include the interactions between hydraulic and treatment mechanisms, and the biomat and sub-biomat zone gas composition and its role in effluent treatment.