5 resultados para Direct-seeding systems
em University of Queensland eSpace - Australia
Resumo:
Reforestation in tropical areas is usually attempted by planting seedlings but, direct seeding (the artificial addition or sowing of seed) may be an alternative way of accelerating forest recovery and successional processes. This study investigated the effects of various sowing treatments (designed to create different microsite conditions for seed germination) and seed sizes on the early establishment and growth of directly sown rainforest tree species in a variety of experimental plots at three sites in the wet tropical region of north-cast Queensland, Australia. The different sowing treatments were found to have significant effects on seedling establishment. Broadcast sowing treatments were ineffective and resulted in very poor seedling establishment and high seed wastage. Higher establishment rates occurred when seeds were buried. Seed size was found to be an important factor affecting establishment in relation to micro-site condition. In general, larger seeded species had higher establishment rates at all three sites than species of small and intermediate seed size, but only in sowing treatments where seeds were buried. Overall these results suggest that direct sowing of seed can be used as a too] to accelerate recolonisation of certain rainforest tree species on degraded tropical lands, but initial success will be dependent on the choice of sowing method and its suitability for the seed types selected. The results also indicate that the recruitment of naturally dispersed tree species at degraded sites is likely to be severely limited by the availability of suitable microsites for seed germination. Consequently the natural recovery of degraded sites via seed rain can be expected to be slow and unpredictable, particularly in areas where soil compaction has occurred. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Aims: To determine the prevalence and concentration of Escherichia coli O157 shed in faeces at slaughter, by beef cattle from different production systems. Methods and Results: Faecal samples were collected from grass-fed (pasture) and lot-fed (feedlot) cattle at slaughter and tested for the presence of E. coli O157 using automated immunomagnetic separation (AIMS). Escherichia coli O157 was enumerated in positive samples using the most probable number (MPN) technique and AIMS and total E. coli were enumerated using Petrifilm. A total of 310 faecal samples were tested (155 from each group). The geometric mean count of total E. coli was 5 x 10(5) and 2.5 x 10(5) CFU g(-1) for lot- and grass-fed cattle, respectively. Escherichia coli O157 was isolated from 13% of faeces with no significant difference between grass-fed (10%) and lot-fed cattle (15%). The numbers of E. coli O157 in cattle faeces varied from undetectable (