9 resultados para Dimeric tin sulfides

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of tin as an alloying element in the production of freeformed infiltrated aluminium components is explored. Tin slows the growth of the aluminium nitride skeleton which provides dimensional stability, as well as increasing the rate of infiltration of the aluminium liquid into the aluminium nitride skeleton. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New mixed-ligand copper(II) complexes of empirical formulas [Cu(pysme)(sac) (CH3OH)] and [Cu(6mptsc)(sac)](2) have been synthesized and characterized by conductance, magnetic, IR and electronic spectroscopic techniques. X-ray crystallographic structure analyses of these complexes indicate that in both complexes the copper(II) ions adopt a five-coordinate distorted square-pyramidal geometry with an N3SO donor environment. The Schiff bases are coordinated to the copper(II) ions as tridentate NNS chelates via the pyridine nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. In the monomeric [Cu(pysme)(sac)(MeOH)] complex, the saccharinate anion acts as a monodentate ligand coordinating the copper(II) ion via the imino nitrogen atom whereas in the dimeric [Cu(6mptsc)(sac)](2) complex, the sac anion behaves as a bridging bidentate ligand providing the imino nitrogen donor atom to one of the copper(II) ions and the carbonyl oxygen as a weakly coordinated axial ligand atom to the other Cu(II) ion. In both complexes, the copper(II) ions have distorted square-pyramidal environments. The distortion from an ideal square-pyramidal geometry is attributed to the restricted bite angles of the planar tridentate ligand. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanocomposites of general layered clays and metal sulfides could be produced from reactions of the layered clay aqueous suspensions and water-soluble metal-thiourea complexes. The clay could be saponite, montmorillonite, hectorite and laponite, while the metal sulfide could be cobalt sulfide, nickel sulfide, zinc sulfide, cadmium sulfide, and lead sulfide. In the nanocomposites, the clay could be incorporated with the metal sulfide pillars and metal sulfide nanoparticles. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The synthesis, characterization and thermal behaviour of some new dimeric allylpalladium (II) complexes bridged by pyrazolate ligands are reported. The complexes [Pd(mu-3, 5-R'(2)pz)(eta(3)-CH2C(R)CH2)](2) [R = H; R'= CH(CH3)(2) (1a); R = H, R' = C(CH3)(3) (1b), R = H; R' = CF3 (1c); R = CH3, R' = CH(CH3)(2) (2a); R = CH3, R' = C(CH3)(3) (2b); and R = CH3, R' = CF3 (2c)] have been prepared by the room temperature reaction of [Pd(eta(3)-CH2C(R)CH2)(acac)](acac = acetylacetonate) with 3,5-disubstituted pyrazoles in acetonitrile solution. The complexes have been characterized by NMR (H-1, C-13{H-1}), FT-IR, and elemental analyses. The structure of a representative complex, viz. 2c, has been established by single-crystal X-ray diffraction. The dinuclear molecule features two formally square planar palladium centres which are bridged by two pyrazole ligands and the coordination of each metal centre is completed by allyl substituents. The molecule has non-crystallographic mirror symmetry. Thermogravimetric studies have been carried out to evaluate the thermal stability of these complexes. Most of the complexes thermally decompose in argon atmosphere to give nanocrystals of palladium, which have been characterized by XRD, SEM and TEM. However, complex 2c can be sublimed in vacuo at 2 mbar without decomposition. The equilibrium vapour pressure of 2c has been measured by the Knudsen effusion technique. The vapour pressure of the complex 2c could be expressed by the relation: In (p/Pa)(+/- 0.06) = -18047.3/T + 46.85. The enthalpy and entropy of vapourization are found to be 150.0 +/- 3 kJ mol(-1) and 389.5 +/- 8 J K-1 mol(-1), respectively. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of tin in the mechanism by which aluminium nitride grows on aluminium powder is explored. In the absence of tin, the aluminium powder nitrides rapidly, with growth occurring both into and out from the surface of the particles. In contrast, nitridation occurs more slowly in the presence of tin, which is incorporated in the growing nitride. When the tin is depleted, rapid nitridation occurs. The initial tin concentration determines the point at which the growth rate changes. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.