65 resultados para Dimensional regularization
em University of Queensland eSpace - Australia
Resumo:
The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.
A unified and complete construction of all finite dimensional irreducible representations of gl(2|2)
Resumo:
Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The interlayer magnetoresistance of the quasi-two-dimensional metal alpha-(BEDT-TTF)(2)KHg(SCN)(4) is considered. In the temperature range from 0.5 to 10 K and for fields up to 10 T the magnetoresistance has a stronger temperature dependence than the zero-field resistance. Consequently Kohler's rule is not obeyed for any range of temperatures or fields. This means that the magnetoresistance cannot be described in terms of semiclassical transport on a single Fermi surface with a single scattering time. Possible explanations for the violations of Kohler's rule are considered, both within the framework of semiclassical transport theory and involving incoherent interlayer transport. The issues considered are similar to those raised by the magnetotransport of the cuprate superconductors. [S0163-1829(98)13219-8].
Resumo:
The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.
Resumo:
To investigate changes in the three-dimensional microfilament architecture of vascular smooth muscle cells (SMC) during the process of phenotypic modulation, rabbit aortic SMCs cultured under different conditions and at different time points were either labelled with fluorescein-conjugated probes to cytoskeletal and contractile proteins for observation by confocal laser scanning microscopy, or extracted with Triton X-100 for scanning electron microscopy. Densely seeded SMCs in primary culture, which maintain a contractile phenotype, display prominent linear myofilament bundles (stress fibres) that are present throughout the cytoplasm with alpha-actin filaments predominant in the central part and beta-actin filaments in the periphery of the cell. Intermediate filaments form a meshed network interconnecting the stress fibres and linking directly to the nucleus. Moderately and sparsely seeded SMCs, which modulate toward the synthetic phenotype during the first 5 days of culture, undergo a gradual redistribution of intermediate filaments from the perinuclear region toward the peripheral cytoplasm and a partial disassembly of stress fibres in the central part of the upper cortex of the cytoplasm, with an obvious decrease in alpha-actin and myosin staining. These changes are reversed in moderately seeded SMCs by day 8 of culture when they have reached confluence. The results reveal two changes in microfilament architecture in SMCs as they undergo a change in phenotype: the redistribution of intermediate filaments probably due to an increase in synthetic organelles in the perinuclear area, and the partial disassembly of stress fibres which may reflect a degradation of contractile components.
Resumo:
We consider the quantum field theory of two bosonic fields interacting via both parametric (cubic) and quartic couplings. In the case of photonic fields in a nonlinear optical medium, this corresponds to the process of second-harmonic generation (via chi((2)) nonlinearity) modified by the chi((3)) nonlinearity. The quantum solitons or energy eigenstates (bound-state solutions) are obtained exactly in the simplest case of two-particle binding, in one, two, and three space dimensions. We also investigate three-particle binding in one space dimension. The results indicate that the exact quantum solitons of this field theory have a singular, pointlike structure in two and three dimensions-even though the corresponding classical theory is nonsingular. To estimate the physically accessible radii and binding energies of the bound states, we impose a momentum cutoff on the nonlinear couplings. In the case of nonlinear optical interactions, the resulting radii and binding energies of these photonic particlelike excitations in highly nonlinear parametric media appear to be close to physically observable values.
Resumo:
The problem of extracting pore size distributions from characterization data is solved here with particular reference to adsorption. The technique developed is based on a finite element collocation discretization of the adsorption integral, with fitting of the isotherm data by least squares using regularization. A rapid and simple technique for ensuring non-negativity of the solutions is also developed which modifies the original solution having some negativity. The technique yields stable and converged solutions, and is implemented in a package RIDFEC. The package is demonstrated to be robust, yielding results which are less sensitive to experimental error than conventional methods, with fitting errors matching the known data error. It is shown that the choice of relative or absolute error norm in the least-squares analysis is best based on the kind of error in the data. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.
Resumo:
alpha-Conotoxin MII, a 16-residue polypeptide from the venom of the piscivorous cone snail Conus magus, is a potent and highly specific blocker of mammalian neuronal nicotinic acetylcholine receptors composed of alpha 3 beta 2 subunits. The role of this receptor type in the modulation of neurotransmitter release and its relevance to the problems of addiction and psychosis emphasize the importance of a structural understanding of the mode of interaction of MII with the alpha 3 beta 2 interface. Here we describe the three-dimensional solution structure of MIT determined using 2D H-1 NMR spectroscopy. Structural restraints consisting of 376 interproton distances inferred from NOEs and 12 dihedral restraints derived from spin-spin coupling constants were used as input for simulated annealing calculations and energy minimization in the program X-PLOR. The final set of 20 structures is exceptionally well-defined with mean pairwise rms differences over the whole molecule of 0.07 Angstrom for the backbone atoms and 0.34 Angstrom for all heavy atoms. MII adopts a compact structure incorporating a central segment of alpha-helix and beta-turns at the N- and C-termini. The molecule is stabilized by two disulfide bonds, which provide cross-links between the N-terminus and both the middle and C-terminus of the structure. The susceptibility of the structure to conformational change was examined using several different solvent conditions. While the global fold of MII remains the same, the structure is stabilized in a more hydrophobic environment provided by the addition of acetonitrile or trifluoroethanol to the aqueous solution. The distribution of amino acid side chains in MII creates distinct hydrophobic and polar patches on its surface that may be important for the specific interaction with the alpha 3 beta 2 neuronal nAChR. A comparison of the structure of MII with other neuronal-specific alpha-conotoxins provides insights into their mode of interaction with these receptors.
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.
Resumo:
We consider the magnetoresistance oscillation phenomena in the Bechgaard salts (TMTSF)(2)X, where X = ClO4, PF6, and AsF6 in pulsed magnetic fields to 51 T. Of particular importance is the observation of a new magnetoresistance oscillation for X = ClO4 in its quenched state. In the absence of any Fermi-surface reconstruction due to anion order at low temperatures, all three materials exhibit nonmonotonic temperature dependence of the oscillation amplitude in the spin-density-wave (SDW) state. We discuss a model where, below a characteristic temperature T* within the SDW state, a magnetic breakdown gap opens. [S0163-1829(99)00904-2].
Resumo:
Integrable Kondo impurities in the one-dimensional supersymmetric U model of strongly correlated electrons are studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local magnetic moments of the impurities are presented as non-trivial realizations of the reflection equation algebras in an impurity Hilbert space. Furthermore, the model Hamiltonian is diagonalized and the Bethe ansatz equations are derived. It is interesting to note that our model exhibits a free parameter in the bulk Hamiltonian but no free parameter exists on the boundaries. This is in sharp contrast to the impurity models arising from the supersymmetric t-J and extended Hubbard models where there is no free parameter in the bulk but there is a free parameter on each boundary.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.