81 resultados para Dimensional Hubbard-model

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the unconventional properties and rich phase diagram of NaxCoO2 we consider the electronic and magnetic properties of a two-dimensional Hubbard model on an isotropic triangular lattice doped with electrons away from half-filling. Dynamical mean-field theory (DMFT) calculations predict that for negative intersite hopping amplitudes (t < 0) and an on-site Coulomb repulsion, U, comparable to the bandwidth, the system displays properties typical of a weakly correlated metal. In contrast, for t > 0 a large enhancement of the effective mass, itinerant ferromagnetism, and a metallic phase with a Curie-Weiss magnetic susceptibility are found in a broad electron doping range. The different behavior encountered is a consequence of the larger noninteracting density of states (DOS) at the Fermi level for t > 0 than for t < 0, which effectively enhances the mass and the scattering amplitude of the quasiparticles. The shape of the DOS is crucial for the occurrence of ferromagnetism as for t > 0 the energy cost of polarizing the system is much smaller than for t < 0. Our observation of Nagaoka ferromagnetism is consistent with the A-type antiferromagnetism (i.e., ferromagnetic layers stacked antiferromagnetically) observed in neutron scattering experiments on NaxCoO2. The transport and magnetic properties measured in NaxCoO2 are consistent with DMFT predictions of a metal close to the Mott insulator and we discuss the role of Na ordering in driving the system towards the Mott transition. We propose that the Curie-Weiss metal phase observed in NaxCoO2 is a consequence of the crossover from a bad metal with incoherent quasiparticles at temperatures T > T-* and Fermi liquid behavior with enhanced parameters below T-*, where T-* is a low energy coherence scale induced by strong local Coulomb electron correlations. Our analysis also shows that the one band Hubbard model on a triangular lattice is not enough to describe the unusual properties of NaxCoO2 and is used to identify the simplest relevant model that captures the essential physics in NaxCoO2. We propose a model which allows for the Na ordering phenomena observed in the system which, we propose, drives the system close to the Mott insulating phase even at large dopings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jordan-Wigner fermionization for the one-dimensional Bariev model of three coupled XY chains is formulated. The L-matrix in terms of fermion operators and the R-matrix are presented explicitly. Furthermore, the graded reflection equations and their solutions are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-dimensional Holstein model of spinless fermions interacting with dispersionless phonons is studied using a new variant of the density matrix renormalization group. By examining various low-energy excitations of finite chains, the metal-insulator phase boundary is determined precisely and agrees with the predictions of strong coupling theory in the antiadiabatic regime and is consistent with renormalization group arguments in the adiabatic regime. The Luttinger liquid parameters, determined by finite-size scaling, are consistent with a Kosterlitz-Thouless transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A t - J model for correlated electrons with impurities is proposed. The impurities are introduced in such a way that integrability of the model in one dimension is not violated. The algebraic Bethe ansatz solution of the model is also given and it is shown that the Bethe states are highest weight states with respect to the supersymmetry algebra gl(2/1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new integrable model for correlated electrons which is based on so(5) symmetry. By using an eta-pairing realization we construct eigenstates of the Hamiltonian with off-diagonal long-range order. It is also shown that these states lie in the ground state sector. We exactly solve the model on a one-dimensional lattice by the Bethe ansatz.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bariev model with open boundary conditions is introduced and analysed in detail in the framework of the Quantum Inverse Scattering Method. Two classes of independent boundary reflecting K-matrices leading to four different types of boundary fields are obtained by solving the reflection equations. The models are exactly solved by means of the algebraic nested Bethe ansatz method and the four sets or Bethe ansatz equations as well as their corresponding energy expressions are derived. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The integrable open-boundary conditions for the Bariev model of three coupled one-dimensional XY spin chains are studied in the framework of the boundary quantum inverse scattering method. Three kinds of diagonal boundary K-matrices leading to nine classes of possible choices of boundary fields are found and the corresponding integrable boundary terms are presented explicitly. The boundary Hamiltonian is solved by using the coordinate Bethe ansatz technique and the Bethe ansatz equations are derived. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study, with exact diagonalization, the zero temperature properties of the quarter-filled extended Hubbard model on a square lattice. We find that increasing the ratio of the intersite Coulomb repulsion, V, to the bandwidth drives the system from a metal to a charge ordered insulator. The evolution of the optical conductivity spectrum with increasing V is in agreement with the observed optical conductivity of several layered molecular crystals with the theta and beta crystal structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature dependence of the transport properties of the metallic phase of a frustrated Hubbard model on the hypercubic lattice at half-filling is calculated. Dynamical mean-held theory, which maps the Hubbard model onto a single impurity,Anderson model that is solved self-consistently, and becomes exact in the limit of large dimensionality, is used. As the temperature increases there is a smooth crossover from coherent Fermi liquid excitations at low temperatures to incoherent excitations at high temperatures. This crossover leads to a nonmonotonic temperature dependence for the resistance, thermopower, and Hall coefficient, unlike in conventional metals. The resistance smoothly increases from a quadratic temperature dependence at low temperatures to large values which can exceed the Mott-Ioffe-Regel value ha/e(2) (where a is a lattice constant) associated with mean free paths less than a lattice constant. Further signatures of the thermal destruction of quasiparticle excitations are a peak in the thermopower and the absence of a Drude peak in the optical conductivity. The results presented here are relevant to a wide range of strongly correlated metals, including transition metal oxides, strontium ruthenates, and organic metals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce an integrable model for two coupled BCS systems through a solution of the Yang-Baxter equation associated with the Lie algebra su(4). By employing the algebraic Bethe ansatz, we determine the exact solution for the energy spectrum. An asymptotic analysis is conducted to determine the leading terms in the ground state energy, the gap and some one point correlation functions at zero temperature. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new class of quantum Monte Carlo methods, based on a Gaussian quantum operator representation of fermionic states. The methods enable first-principles dynamical or equilibrium calculations in many-body Fermi systems, and, combined with the existing Gaussian representation for bosons, provide a unified method of simulating Bose-Fermi systems. As an application relevant to the Fermi sign problem, we calculate finite-temperature properties of the two dimensional Hubbard model and the dynamics in a simple model of coherent molecular dissociation.