2 resultados para Digital mapping--Specimens.
em University of Queensland eSpace - Australia
Resumo:
Microhardness maps of cross-sections of high-pressure diecast test bars of AZ91 have been determined. Specimens with rectangular cross-sections, 1, 2 and 3 mm thick, or with a circular cross-section 6.4 mm in diameter, have been studied. The hardness is generally higher near the edges in all specimens, and more so near the corners of the rectangular specimens. The hardness at the center of the castings is generally lower, due to a coarser solidification microstructure and the concentration of porosity. The evidence confirms that the surface of the castings is harder than the core, but it does not support the concept of a skin with a sharp. and definable boundary. This harder layer is irregular in hardness and depth and is not equally hard on opposite sides of the casting. The mean hardness obtained by integrating the microhardness maps over the entire cross-section increased with decreasing thickness of the bars, and was found to be in good correlation with each bar's yield strength. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Large areas of tropical sub- and inter-tidal seagrass beds occur in highly turbid environments and cannot be mapped through the water column. The purpose of this project was to determine if and how airborne and satellite imaging systems could be used to map inter-tidal seagrass properties along the wet-tropics coast in north Queensland, Australia. The work aimed to: (1) identify the minimum level of seagrass foliage cover that could be detected from airborne and satellite imagery; and (2) define the minimum detectable differences in seagrass foliage cover in exposed intertidal seagrass beds. High resolution spectral-reflectance data (2040 bands, 350 – 2500nm) were collected over 40cm diameter plots from 240 sites on Magnetic Island, Pallarenda Beach and Green Island in North Queensland at spring low tides in April 2006. The seagrass species sampled were: Thalassia hemprechii, Halophila ovalis, Halodule uninerivs; Syringodium isoetifolium, Cymodocea serrulata, and Cymodoea rotundata. Digital photos were captured for each plot and used to derive estimates of seagrass species cover, epiphytic growth, micro- and macro-algal cover, and substrate colour. Sediment samples were also collected and analysed to measure the concentration of Chlorophyll-a associated with benthic micro-algae. The field reflectance spectra were analysed in combination with their corresponding seagrass species foliage cover levels to establish the minimum foliage projective cover required for each seagrass to be significantly different from bare substrate and substrate with algal cover. This analysis was repeated with reflectance spectra resampled to the bandpass functions of Quickbird, Ikonos, SPOT 5 and Landsat 7 ETM. Preliminary results indicate that conservative minimum detectable seagrass cover levels across most the species sampled were between 30%- 35% on dark substrates. Further analysis of these results will be conducted to determine their separability and satellite images and to assess the effects epiphytes and algal cover.