56 resultados para Diffusion and lntermittency

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diffusion- and perfusion-weighted magnetic resonance imaging provides important pathophysiological information in acute bra-in ischemia. We performed a prospective study in 19 sub-6-hour stroke patients using serial diffusion- and perfusion-weighted imaging before intravenous thrombolysis, with repeat studies, both subacutely and at outcome. For comparison of ischemic lesion evolution and clinical outcome, we used a historical control group of 21 sub-6-hour ischemic stroke patients studied serially with diffusion- and perfusion-weighted imaging. The two groups were well matched for the baseline National Institutes of Health Stroke Scale and magnetic resonance parameters. Perfusion-weighted imaging-diffusion-weighted imaging mismatch was present in 16 of 19 patients treated with tissue plasminogen activator, and 16 of 21 controls. Perfusion-weighted imaging-diffusion-weighted imaging mismatch patients treated with tissue plaminogen activator had higher recanalization rates and enhanced reperfusion at day 3 (81% vs 47% in controls), and a greater proportion of severely hypoperfused acute mismatch tissue not progressing to infarction (82% vs -25% in controls). Despite similar baseline diffusion-weighted imaging lesions, infarct expansion was less in the recombinant tissue plaminogen activator group (14cm(3) vs 56cm(3) in controls). The positive effect of thrombolysis on lesion growth in mismatch patients translated into a greater improvement in baseline to outcome National Institutes of Health Stroke Scale in the group treated with recombinant tissue plaminogen activator, and a significantly larger proportion of patients treated with recombinant tissue plaminogen activator having a clinically meaningful improvement in National Institutes of Health Stroke Scale of;2:7 points. The natural evolution of acute perfusion-weighted imaging-diffusion-weighted imaging mismatch tissue may be altered by thrombolysis, with improved stroke outcome. This has implications for the use of diffusion- and perfusion-weighted imaging in selecting and monitoring patients for thrombolytic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogels with various compositions of polyvinyl alcohol (PVA) and poly(1-vinyl-2-pyrrolidinone) (PVP) were prepared by irradiating mixtures of PVA and PVP in aqueous solutions with gamma-rays from Co-60 sources at room temperature. The states of water in the hydrogels were characterized using DSC and NMR T-2 relaxation measurements and the kinetics of water diffusion in the hydrogels were studied by sorption experiments and NMR imaging. The DSC endothermic peaks in the temperature range -10 to +10 degrees C implied that there are at least two kinds of freezable water present in the matrix. The difference between the total water content and the freezable water content was refer-red to as bound water, which is not freezable. The weight fraction of water at which only nonfreezable water is present in a hydrogel with F-VP = 0.19 has been estimated to be g(H2O)/g(Polymer) = 0.375. From water sorption experiments, it was demonstrated that the early stage of the diffusion of water into the hydrogels was Fickian. A curve-fit of the early-stage experimental data to the Fickian model allowed determination of the water diffusion coefficient, which was found to lie between 1.5 x 10(-11) m(2) s(-1) and 4.5 x 10(-11) m(2) s(-1), depending on the polymer composition, the cross-link density, and the temperature. It was also found that the energy barrier for diffusion of water molecules into PVA/PVP hydrogels was approximate to 24 kJ mol(-1). Additionally, the diffusion coefficients determined from NMR imaging of the volumetric swelling of the gels agreed well with the results obtained by the mass sorption method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spatial and temporal evolution of a depleted atomic distribution created by laser enhanced ionisation (LEI) was employed to determine both a diffusion coefficient for sodium (Na) and an electron (e(-)) and sodium ion recombination rate coefficient in an analytical air-C2H2 flame. A depleted distribution of neutral sodium atoms was produced in a flame by ionising approximately 80% of the irradiated sodium atoms in a well defined region using a two step LEI excitation scheme. Following depletion by ionisation, planar laser induced fluorescence (PLIF) images of the depleted region recorded the diffusion and decay of the depleted Na distribution for different depletion-probe delays. From measurements of the diffused width of the distribution, an accurate diffusion coefficient D = (1.19 +/- 0.03) x 10(-3) m(2) s(-1) for Na was determined in teh burnt gases of the flame. Measurements of the integrated fluorescence intensity in the depleted region for different depletion-probe delays were related to an increase in atomic sodium concentration caused by electron-ion recombination. At high concentrations (greater than or equal to 50 mu g ml(-1)), where the electron and ion concentrations in the depleted region were assumed equal, a recombination rate coefficient of 4.2 x 10(-9) cm(3) s(-1) was calculated. (C) 1997 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption and diffusion in a porous media were studied theoretically and experimentally with a differential transient permeation method. The porous medium is allowed to equilibrate at some specified loading, and then the time trajectory of the permeation process is followed after a small difference between the pressures at the end faces of the porous medium is introduced at time t = 0 +. Such a trajectory us. time would contain adsorption and diffusion characteristics of the system. By studying this for various surface loadings, pore and surface diffusions can be fully characterized. Mathematical modeling of transient permeation is detailed for pure gases or vapors diffusion and adsorption in porous media. Effects of nonlinearity of adsorption isotherm, pressure, temperature and heat effects were considered in the model. Experimental data of diffusion and adsorption of propane, n-butane and n-hexane in activated carbon at different temperatures and loadings show the potential of this method as a useful tool to study adsorption kinetics in porous media. Validity of the model is best tested against the transient data where the kinetics curves exhibit sigmoidal shape, which is a result of the diffusion and adsorption rate during the initial stage of permeation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper the diffusion and flow of carbon tetrachloride, benzene and n-hexane through a commercial activated carbon is studied by a differential permeation method. The range of pressure is covered from very low pressure to a pressure range where significant capillary condensation occurs. Helium as a non-adsorbing gas is used to determine the characteristics of the porous medium. For adsorbing gases and vapors, the motion of adsorbed molecules in small pores gives rise to a sharp increase in permeability at very low pressures. The interplay between a decreasing behavior in permeability due to the saturation of small pores with adsorbed molecules and an increasing behavior due to viscous flow in larger pores with pressure could lead to a minimum in the plot of total permeability versus pressure. This phenomenon is observed for n-hexane at 30degreesC. At relative pressure of 0.1-0.8 where the gaseous viscous flow dominates, the permeability is a linear function of pressure. Since activated carbon has a wide pore size distribution, the mobility mechanism of these adsorbed molecules is different from pore to pore. In very small pores where adsorbate molecules fill the pore the permeability decreases with an increase in pressure, while in intermediate pores the permeability of such transport increases with pressure due to the increasing build-up of layers of adsorbed molecules. For even larger pores, the transport is mostly due to diffusion and flow of free molecules, which gives rise to linear permeability with respect to pressure. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stratum corneum (SC) desorption experiments have yielded higher calculated steady-state fluxes than those obtained by epidermal penetration studies. A possible explanation of this result is a variable diffusion or partition coefficient across the SC. We therefore developed the diffusion model for percutaneous penetration and desorption to study the effects of either a variable diffusion coefficient or variable partition coefficient in the SC over the diffusion path length. Steady-state flux, lag time, and mean desorption time were obtained from Laplace domain solutions. Numerical inversion of the Laplace domain solutions was used for simulations of solute concentration-distance and amount penetrated (desorbed)-time profiles. Diffusion and partition coefficients heterogeneity were examined using six different models. The effect of heterogeneity on predicted flux from desorption studies was compared with that obtained in permeation studies. Partition coefficient heterogeneity had a more profound effect on predicted fluxes than diffusion coefficient heterogeneity. Concentration-distance profiles show even larger dependence on heterogeneity, which is consistent with experimental tape-stripping data reported for clobetasol propionate and other solutes. The clobetasol propionate tape-stripping data were most consistent with the partition coefficient decreasing exponentially for half the SC and then becoming a constant for the remaining SC. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ovine lumbar intervertebral disc is a useful model for the human lumbar disc. We present preliminary estimates of diffusion coefficients and T-2 relaxation times in a pilot MRI study of the ovine lumbar intervertebral disc during uniaxial compression in vitro, and identify factors that hamper the ability to accurately monitor the temporal evolution of the effective diffusion tensor at high spatial resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft tissue engineering presents significant challenges compared to other tissue engineering disciplines such as bone, cartilage or skin engineering. The very high cell density in most soft tissues, often combined with large implant dimensions, means that the supply of oxygen is a critical factor in the success or failure of a soft tissue scaffold. A model is presented for oxygen diffusion in a 15-60 mm diameter dome-shaped scaffold fed by a blood vessel loop at its base. This model incorporates simple models for vascular growth, cell migration and the effect of cell density on the effective oxygen diffusivity. The model shows that the dynamic, homogeneous cell seeding method often employed in small-scale applications is not applicable in the case of larger scale scaffolds such as these. Instead, we propose the implantation of a small biopsy of tissue close to a blood supply within the scaffold as a technique more likely to be successful. Crown Copyright (c) 2005 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study introduces the use of combined Na-23 magnetic resonance imaging (MRI) and Na-23 NMR relaxometry for the study of meat curing. The diffusion of sodium ions into the meat was measured using Na-23 MRI on a 1 kg meat sample brined in 10% w/w NaCl for 3-100 h. Calculations revealed a diffusion coefficient of 1 x 10(-5) cm(2)/s after 3 h of curing and subsequently decreasing to 8 x 10(-6) cm(2)/s at longer curing times, suggesting that changes occur in the microscopic structure of the meat during curing. The microscopic mobility and distribution of sodium was measured using Na-23 relaxometry. Two sodium populations were observed, and with increasing length of curing time the relaxation times of these changed, reflecting a salt-induced swelling and increase in myofibrillar pore sizes. Accordingly, the present study demonstrated that pore size and thereby salt-induced swelling in meat can be assessed using Na-23 relaxometry.