119 resultados para Difference Between Generation X and Y Employees
em University of Queensland eSpace - Australia
Resumo:
Pulse wave velocity (PWV) is a known parameter that is related to arterial distensibility. However, its potential is hampered by the absence of appropriate techniques to estimate it noninvasively. PWV can be used as an assessment of increased arterial stiffness that is linked to systolic hypertension, excess cardiovascular morbidity and mortality.(1,2)
Resumo:
Introduction: In the World Health Organization (WHO) MONICA (multinational MONItoring of trends and determinants in CArdiovascular disease) Project considerable effort was made to obtain basic data on non-respondents to community based surveys of cardiovascular risk factors. The first purpose of this paper is to examine differences in socio-economic and health profiles among respondents and non-respondents. The second purpose is to investigate the effect of non-response on estimates of trends. Methods:Socio-economic and health profile between respondents and non-respondents in the WHO MONICA Project final survey were compared. The potential effect of non-response on the trend estimates between the initial survey and final survey approximately ten years later was investigated using both MONICA data and hypothetical data. Results: In most of the populations, non-respondents were more likely to be single, less well educated, and had poorer lifestyles and health profiles than respondents. As an example of the consequences, temporal trends in prevalence of daily smokers are shown to be overestimated in most populations if they were based only on data from respondents. Conclusions: The socio-economic and health profiles of respondents and non-respondents differed fairly consistently across 27 populations. Hence, the estimators of population trends based on respondent data are likely to be biased. Declining response rates therefore pose a threat to the accuracy of estimates of risk factor trends in many countries.
Resumo:
Plant performance is, at least partly, linked to the location of roots with respect to soil structure features and the micro-environment surrounding roots. Measurements of root distributions from intact samples, using optical microscopy and field tracings have been partially successful but are imprecise and labour-intensive. Theoretically, X-ray computed micro-tomography represents an ideal solution for non-invasive imaging of plant roots and soil structure. However, before it becomes fast enough and affordable or easily accessible, there is still a need for a diagnostic tool to investigate root/soil interplay. Here, a method for detection of undisturbed plant roots and their immediate physical environment is presented. X-ray absorption and phase contrast imaging are combined to produce projection images of soil sections from which root distributions and soil structure can be analyzed. The clarity of roots on the X-ray film is sufficient to allow manual tracing on an acetate sheet fixed over the film. In its current version, the method suffers limitations mainly related to (i) the degree of subjectivity associated with manual tracing and (ii) the difficulty of separating live and dead roots. The method represents a simple and relatively inexpensive way to detect and quantify roots from intact samples and has scope for further improvements. In this paper, the main steps of the method, sampling, image acquisition and image processing are documented. The potential use of the method in an agronomic perspective is illustrated using surface and sub-surface soil samples from a controlled wheat trial. Quantitative characterization of root attributes, e.g. radius, length density, branching intensity and the complex interplay between roots and soil structure, is presented and discussed.
Resumo:
Abnormalities in the growth plate may lead to short stature and skeletal deformity including Leri Weil syndrome, which has been shown to result from deletions or mutations in the SHOX gene, a homeobox gene located at the pseudoautosomal region of the X and Y chromosome. We studied the expression of SHOX protein, by immunohistochemistry, in human fetal and childhood growth plates and mRNA by in situ hybridization in childhood normal and Leri Weil growth plate. SHOX protein was found in reserve, proliferative, and hypertrophic zones of fetal growth plate from 12 wk to term and childhood control and Leri Weil growth plates. The pattern of immunostaining in the proliferative zone of childhood growth plate was patchy, with more intense uniform immunostaining in the hypertrophic zone. In situ hybridization studies of childhood growth plate demonstrated SHOX mRNA expression throughout the growth plate. No difference in the pattern of SHOX protein or mRNA expression was seen between the control and Leri Weil growth plate. These findings suggest that SHOX plays a role in chondrocyte function in the growth plate.
Resumo:
Determination of the bicarbonate retention factor (BRF) is an important step during development of the indicator amino acid oxidation technique for use in a new model. A series of 4-h oxidation experiments were performed to determine the BRF of broilers aged 7, 14, 21, 28, 35, and 42 d using 4 birds per age group. A priming dose of 1.2 mu Ci of (NaHCO3)-C-14, followed by eight half-hourly doses of 1 mu Ci of (NaHCO3)-C-14 were given orally to each of 4 birds per age. The percentage of 14 C dose expired by the bird at a steady state was measured. These birds, as well as 12 additional birds matched for age and BW, were killed, and femur bone mineral density was measured by quantitative computed tomography to determine the relationship between bone development and bicarbonate retention at each age. There was a correlation (r = 0.50; P < 0.05) between total cross-sectional femur bone mineral density and bicarbonate retention at each age. A prediction equation (Y = 6.95 x 10(-2) X - 3.51 x 10(5)X(2) + 27.58; P < 0.0001, R-2 = 0.79) where Y = bicarbonate retention and X = BW was generated to predict Y as a function of X. Bicarbonate retention values peaked at 28 d, during the stage of the most rapid bone deposition and the highest growth rate. A constant BRF was found from 1,900 to 2,700 g of BW of 35.15 +/- 1.095% (mean SEM). This retention factor will allow the accurate correction of oxidation of C-14-labeled substrates in broilers of different ages and BW in future indicator amino acid oxidation studies.
Resumo:
This article examines the seventeenth-century debate between the Dutch philosopher Benedict de Spinoza and the British scientist Robert Boyle, with a view to explicating what the twentieth-century French philosopher Gilles Deleuze considers to be the difference between science and philosophy. The two main themes that are usually drawn from the correspondence of Boyle and Spinoza, and used to polarize the exchange, are the different views on scientific methodology and on the nature of matter that are attributed to each correspondent. Commentators have tended to focus on one or the other of these themes in order to champion either Boyle or Spinoza in their assessment of the exchange. This paper draws upon the resources made available by Gilles Deleuze and Felix Guattari in their major work What is Philosophy?, in order to offer a more balanced account of the exchange, which in its turn contributes to our understanding of Deleuze and Guattari's conception of the difference between science and philosophy.
Resumo:
Layered lithium-vanadium oxide with a composition of LixVyO2 (x = 0.86 and y = 0.8) was prepared by the hydrothermal reaction of V2O3 with LiOH center dot H2O at 180 degrees C. This material corresponds to a layered rhombohedral structure related to alpha-NaFeO2 in which the vanadium ions are disordered in alternate layers of octahedral 3a (0, 0, 0) and 3b (0, 0, 1/2) sites. The electrochemical properties of this Li0.86V0.8O2 material were investigated and compared with those of the layered Li0.96VO2 made by the conventional solid-state reaction. It was found that the electrochemical capacity and reversibility of the Li0.86V0.8O2 material are significantly improved compared to those of the Li0.96VO2 material; the reversible specific capacities of the Li/Li0.86V0.8O2 and Li/Li0.96VO2 systems are similar to 100 and similar to 50 mAh g(-1), respectively, under the current densities of 7.14 mA g(-1) over 20 charge-discharge cycles with a potential window of 1.50-4.50 V. Such a reversibility results from the structural stability of Li0.86V0.8O2, whereas the increase in the reversible specific capacity can be qualitatively interpreted in terms of the presence of vanadium vacancies in the structure. (c) 2005 The Electrochemical Society.
Resumo:
Pulse transit time (PTT) is a non-invasive measure, defined as time taken for the pulse pressure waves to travel from the R-wave of electrocardiogram to a selected peripheral site. Baseline PTT value is known to be influenced by physiologic variables like heart rate (HR), blood pressure (BP) and arterial compliance (AC). However, few quantitative data are available describing the factors which can influence PTT measurements in a child during breathing. The aim of this study was to investigate the effects of changes in breathing efforts on PTT baseline and fluctuations. Two different inspiratory resistive loading (IRL) devices were used to simulate loaded breathing in order to induce these effects. It is known that HR can influence the normative PTT value however the effect of HR variability (HRV) is not well-studied. Two groups of 3 healthy children ( 0.05) HR changes during all test activities. Results showed that HRV is not the sole contributor to PTT variations and suggest that changes in other physiologic parameters are also equally important. Hence, monitoring PTT measurement can be indicative of these associated changes during tidal or increased breathing efforts in healthy children.
Resumo:
Multiple sclerosis (MS) is a complex neurological disease that affects the central nervous system (CNS) resulting in debilitating neuropathology. Pathogenesis is primarily defined by CNS inflammation and demyelination of nerve axons. Methionine synthase reductase (MTRR) is an enzyme that catalyzes the remethylation of homocysteine (Hcy) to methionine via cobalamin and folate dependant reactions. Cobalamin acts as an intermediate methyl carrier between methylenetetrahydrofolate reductase (MTHFR) and Hcy. MTRR plays a critical role in maintaining cobalamin in an active form and is consequently an important determinant of total plasma Hcy (pHcy) concentrations. Elevated intracellular pHcy levels have been suggested to play a role in CNS dysfunction, neurodegenerative, and cerebrovascular diseases. Our investigation entailed the genotyping of a cohort of 140 cases and matched controls for MTRR and MTHFR, by restriction length polymorphism (RFLP) techniques. Two polymorphisms: MTRR A66G and MTHFR A1298C were investigated in an Australian age and gender matched case-control study. No significant allelic frequency difference was observed between cases and controls at the α = 0.05 level (MTRR χ^2 = 0.005, P = 0.95, MTHFR χ^2 = 1.15, P = 0.28). Our preliminary findings suggest no association between the MTRR A66G and MTHFR A1298C polymorphisms and MS.