237 resultados para Didactic Industrial Systems
em University of Queensland eSpace - Australia
Resumo:
An extensive research program focused on the characterization of various metallurgical complex smelting and coal combustion slags is being undertaken. The research combines both experimental and thermodynamic modeling studies. The approach is illustrated by work on the PbO-ZnO-Al2O3-FeO-Fe2O3-CaO-SiO2 system. Experimental measurements of the liquidus and solidus have been undertaken under oxidizing and reducing conditions using equilibration, quenching, and electron probe X-ray microanalysis. The experimental program has been planned so as to obtain data for thermodynamic model development as well as for pseudo-ternary Liquidus diagrams that can be used directly by process operators. Thermodynamic modeling has been carried out using the computer system FACT, which contains thermodynamic databases with over 5000 compounds and evaluated solution models. The FACT package is used for the calculation of multiphase equilibria in multicomponent systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New optimizations have been carried out, which significantly improve the accuracy of the thermodynamic models for lead/zinc smelting and coal combustion processes. Examples of experimentally determined and calculated liquidus diagrams are presented. These examples provide information of direct relevance to various metallurgical smelting and coal combustion processes.
Resumo:
The reported experimental work on the systems Fe-Zn-O and Fe-Zn-Si-O in equilibrium with metallic iron is part of a wider research program that combines experimental and thermodynamic computer modeling techniques to characterize zinc/lead industrial slags and sinters in the system PbO-ZnO-SiO2-CaO-FeO-Fe2O3. Extensive experimental,investigations using high-temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA) were carried out. Special experimental; procedures were developed to enable accurate measurements in these ZnO-containing systems to be performed in equilibrium with metallic iron; The systems Fe-Zn-O and FeZn-Si-O were experimentally investigated in equilibrium with metallic iron in the temperature ranges 900 degreesC to 1200 degreesC (1173 to 1473 K) and from 1000 degreesC to 1350 degreesC (1273 to 1623 K), respectively. The liquidus surface in the system Fe-Zn-Si-O in equilibrium with metallic iron was characterized in the composition ranges 0 to 33 wt pet ZnO and 0 to 40 wt pet SiO2. The wustite (Fe,Zn)O, zincite (Zn,Fe)O, willemite (Zn,Fe)(2)SiO4, arid fayalite: (Fe,Zn)(2)SiO4 solid solutions in equilibrium with metallic iron were measured.
Resumo:
We present a technique for team design based on cognitive work analysis (CWA). We first develop a rationale for this technique by discussing the limitations of conventional approaches for team design in light of the special characteristics of first-of-a-kind, complex systems. We then introduce the CWA-based technique for team design and provide a case study of how we used this technique to design a team for a first-of-a-kind, complex military system during the early stages of its development. In addition to illustrating the CWA-based technique by example, the case study allows us to evaluate the technique. This case study demonstrates that the CWA-based technique for team design is both feasible and useful, although empirical validation of the technique is still necessary. Applications of this work include the design of teams for first-of-a-kind, complex systems in military, medical, and industrial domains.
Resumo:
Published polymer distribution data for aqueous poly(ethylene glycol)/dextran mixtures have been reassessed to illustrate the feasibility of their quantitative characterization in terms of the Flory-Huggins theory of polymer thermodynamics. Phase diagrams predicted by this characterization procedure provide better descriptions of the experimental data than those based on an earlier, oversimplified treatment in similar terms. (C) 2003 Wiley Periodicals, Inc.
Resumo:
Software Configuration Management is the discipline of managing large collections of software development artefacts from which software products are built. Software configuration management tools typically deal with artefacts at fine levels of granularity - such as individual source code files - and assist with coordination of changes to such artefacts. This paper describes a lightweight tool, designed to be used on top of a traditional file-based configuration management system. The add-on tool support enables users to flexibly define new hierarchical views of product structure, independent of the underlying artefact-repository structure. The tool extracts configuration and change data with respect to the user-defined hierarchy, leading to improved visibility of how individual subsystems have changed. The approach yields a range of new capabilities for build managers, and verification and validation teams. The paper includes a description of our experience using the tool in an organization that builds large embedded software systems.
Resumo:
This communication reports a laboratory and plant comparison between the University of Cape Town (UCT) device (capillary) and the McGill University bubble sizing method (imaging). The laboratory work was conducted on single bubbles to establish the accuracy of the techniques by comparing with a reference method (capture in a burette). Single bubble measurements with the McGill University technique showed a tendency to slightly underestimate (4% for a 1.3 mm bubble) and the UCT technique to slightly overestimate (1% for the 1.3 man bubble). Both trends are anticipated from fundamental considerations. In the UCT technique bubble breakup was observed when measuring a 2.7 mm bubble using a 0.5 mm ID capillary tube. A discrepancy of 11% was determined when comparing the techniques in an industrial-scale mechanical flotation cell. The possible sources of bias are discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Creating competitive industries has become one of the key tasks of governments. Different adaptation outcomes in industries across nations cannot be accounted for fully simply by an emphasis on firm-level capabilities, market-driven policies, or state-level policies. We propose an integrative framework that draws on both the strategic management and political economy literature to explain variations in national industrial competitiveness.. We discuss differences with respect to institutional characteristics and capabilities, competitive outcomes, conditions of best fit, and who bears the cost of industry adaptation.
Resumo:
Granulation is one of the fundamental operations in particulate processing and has a very ancient history and widespread use. Much fundamental particle science has occurred in the last two decades to help understand the underlying phenomena. Yet, until recently the development of granulation systems was mostly based on popular practice. The use of process systems approaches to the integrated understanding of these operations is providing improved insight into the complex nature of the processes. Improved mathematical representations, new solution techniques and the application of the models to industrial processes are yielding better designs, improved optimisation and tighter control of these systems. The parallel development of advanced instrumentation and the use of inferential approaches provide real-time access to system parameters necessary for improvements in operation. The use of advanced models to help develop real-time plant diagnostic systems provides further evidence of the utility of process system approaches to granulation processes. This paper highlights some of those aspects of granulation. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A systematic goal-driven top-down modelling methodology is proposed that is capable of developing a multiscale model of a process system for given diagnostic purposes. The diagnostic goal-set and the symptoms are extracted from HAZOP analysis results, where the possible actions to be performed in a fault situation are also described. The multiscale dynamic model is realized in the form of a hierarchical coloured Petri net by using a novel substitution place-transition pair. Multiscale simulation that focuses automatically on the fault areas is used to predict the effect of the proposed preventive actions. The notions and procedures are illustrated on some simple case studies including a heat exchanger network and a more complex wet granulation process.
Resumo:
In this work, a working model is proposed of molecular sieve silica (MSS) multistage membrane systems for CO cleanup at high temperatures (up to 500 degrees C) in a simulated fuel cell fuel processing system. Gases are described as having little interactions with each other relative to the pore walls due to low isosteric heat of adsorption on silica surfaces and high temperatures. The Arrhenius function for activated transport of pure gases was used to predict mixture concentration in the permeate and retentate streams. Simulation predicted CO could be reduced to levels below the required 50 ppmv for polymer electrolyte membrane fuel cell anodes at a stage H-2/CO selectivity of higher than 40 in 4 series membrane units. Experimental validation showed predicting mixture concentrations required only pure gas permeation data. This model has significant application for setting industrial stretch targets and as a robust basis for complex membrane model configurations. (c) 2006 American Institute of Chemical Engineers.
Resumo:
Traditional real-time control systems are tightly integrated into the industrial processes they govern. Now, however, there is increasing interest in networked control systems. These provide greater flexibility and cost savings by allowing real-time controllers to interact with industrial processes over existing communications networks. New data packet queuing protocols are currently being developed to enable precise real-time control over a network with variable propagation delays. We show how one such protocol was formally modelled using timed automata, and how model checking was used to reveal subtle aspects of the control system's dynamic behaviour.