2 resultados para Diaphragms (Mechanical devices)

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Protein molecular motors, which are natural nano-machines that convert the chemical energy into mechanical work for cellular motion, muscle contraction and cell division, have been integrated in the last decade in primitive nanodevices based on the motility of nano-biological objects in micro- and nano-fabricated structures. However, the motility of microorganisms powered by molecular motors has not been similarly exploited. Moreover, among the proposed devices based on molecular motors, i.e., nanosensors, nano-mechanical devices and nano-imaging devices, biocomputation devices are conspicuously missing. The present contribution discusses, based on the present state of the art nano- and micro-fabrication, the comparative advantages and disadvantages of using nano- and micro-biological objects in future computation devices. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe a method to produce local heating or cooling (depending on how the system is tuned) in a mesoscopic device by transport of electrons. The mechanism can operate on molecules or quantum dots, or any system where the local modes are coupled to vibrations. We believe this will be of future interest in micro electro mechanical systems (MEMS). The amount of heating/cooling obtained depends on the details of the device. We also perform a numerical calculation to display the effect. (C) 2004 Elsevier B.V. All rights reserved.