261 resultados para Developmental Expression
em University of Queensland eSpace - Australia
Resumo:
POU-IV genes regulate neuronal development in a number of deuterostomes (chordates) and ecdysozoans (arthropods and nematodes). Currently their function and expression in the third bilaterian clade, the Lophotrochozoa, comprising molluscs, annelids and. their affiliates, is unclear. Herein we characterise the developmental expression of HasPOU-IV in the gastropod mollusc, Haliotis asinina. The POU-IV gene is transiently expressed in I I distinct larval territories during the first 3 days of development. HasPOU-IV is first expressed in sets of ventral epidermal cells in the newly hatched trochophore larvae. As larval morphogenesis proceeds, we observe HasPOU-IV transcripts in cells that putatively form a range of sensory systems including chemo- and mechanosensory cells in the foot, cephalic tentacles, the ctenidia. the geosensory statocyst and the eyes. By comparing HasPOU-IV expression with POU-IV genes in other bilaterians we infer that this class of POU-domain genes had an ancestral role in regulating sensory cell development.
Resumo:
Nuclear receptors are a superfamily of metazoan transcription factors that have been shown to be involved in a wide range of developmental and physiological processes. A PCR-based survey of genomic DNA and developmental cDNAs from the ascidian Herdmania identifies eight members of this multigene family. Sequence comparisons and phylogenetic analyses reveal that these ascidian nuclear receptors are representative of five of the six previously defined nuclear receptor subfamilies and are apparent homologues of retinoic acid [NR1B], retinoid X [NR2B], peroxisome proliferator-activated [NR1C], estrogen related [NR3B], neuron-derived orphan (NOR) [NR4A3], nuclear orphan [NR4A], TR2 orphan [NR2C1] and COUP orphan [NR2F3] receptors. Phylogenetic analyses that include the ascidian genes produce topologically distinct trees that suggest a redefinition of some nuclear receptor subfamilies. These trees also suggest that extensive gene duplication occurred after the vertebrates split from invertebrate chordates. These ascidian nuclear receptor genes are expressed differentially during embryogenesis and metamorphosis.
Resumo:
Hemocyanins are large copper-containing respiratory proteins that play a role in oxygen transport in many molluscs. In some species only one hemocyanin isoform is present while in others two are expressed. The physiological relevance of these isoforms is unclear and the developmental and tissue-specific expression of hemocyanin genes is largely unknown. Here we show that two hemocyanin genes in the gastropod Haliotis asinina, which encode H. asinina hemocyanin (HaH1) and HaH2 isoforms, are developmentally expressed. These genes initially are expressed in a small number of mesenchyme cells at trochophore and pre-torsional veliger stages, with HaH1 expression slightly preceding HaH2. These cells largely are localized to the visceral mass, although a small number of cells are present in head and foot regions. Following metamorphosis the isoforms show overlapping as well as isoform-specific expression profiles, suggesting some degree of isoform-specific function.
Resumo:
Demosponges are considered part of the most basal evolutionary lineage in the animal kingdom. Although the sponge body plan fundamentally differs from that of other metazoans, their development includes many of the hallmarks of bilaterian and eumetazoan embryogenesis, namely fertilization followed by a period of cell division yielding distinct cell populations, which through a gastrulation-like process become allocated into different cell layers and patterned within these layers. These observations suggest that the last common ancestor (LCA) to all living animals was developmentally more sophisticated than is widely appreciated and used asymmetric cell division and morphogen gradients to establish localized populations of specified cells within the embryo. Here we demonstrate that members of a range of transcription factor gene classes, many of which appear to be metazoan-specific, are expressed during the development of the demosponge Reniera, including ANTP, Pax, POU, LIM-HD, Sox, nuclear receptor, Fox (forkhead), T-box, Mef2, and Ets genes. Phylogenetic analysis of these genes suggests that not only the origin but the diversification of some of the major developmental metazoan transcription factor classes took place before sponges diverged from the rest of the Metazoa. Their expression during demosponge development suggests that, as in today's sophisticated metazoans, these genes may have functioned in the regulatory network of the metazoan LCA to control cell specification and regionalized gene expression during embryogenesis.
Resumo:
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.
Resumo:
Most animals have sensory systems that allow them to balance and orient relative to the pull of gravity. Structures responsible for these functions range from very simple statocysts found in many aquatic invertebrates to the complex inner ear of mammals. Previous studies suggest that the specialized mechanosensory structures responsible for balance in vertebrates and insects may be homologous based on the requirement and expression of group II Pax genes (i.e., Pax-2/5/8 genes). Here we report the expression of a Pax-258 gene in the statocysts and other chemosensory and mechanosensory cells during the development of the gastropod mollusk Haliotis asinina, a member of the Lophotrochozoa. Based on the phylogenetic distribution of geo-sensory systems and the consistent expression of Pax-258 in the cells that form these systems, we propose that Pax-258, along with POU-III and -IV genes, has an ancient and conserved role in the formation of structures responsible for balance and geotaxis in eumetazoans.
Resumo:
The non-geniculate crustose coralline alga (CCA) Mastophora pacifica can induce the metamorphosis of competent Haliotis asinina (Vetigastropoda) larvae. The ability to respond to this natural cue varies considerably with larval age, with a higher proportion of older larvae (e.g. 90 h) able to metamorphose in response to M. pacifica than younger larvae (e.g. 66 h). Here we document the variation in time to acquisition of competence within a larval age class. For example, after 18 h of exposure to M. pacifica, approximately 15 and 36% of 84 and 90-h-old H. asinina larvae had initiated metamorphosis, respectively. This age-dependent response to M. pacifica is also observed when different aged larvae are exposed to CCA for varying periods. A higher proportion of older larvae require shorter periods of exposure to CCA than younger larvae in order to initiate metamorphosis. In this experiment, as in the previous, a small proportion of young larvae were able to respond to brief periods of CCA exposure, suggesting that they had developed the same state of competency as the majority of their older counterparts. Comparisons of the proportions of larvae undergoing metamorphosis between families reveals that parentage also has a significant (P < 0.05) affect on whether an individual will initiate metamorphosis at a given age. These familial differences are more pronounced when younger, largely pre-competent larvae (i.e. 66 h old) are exposed to M. pacifica, with proportions of larvae undergoing metamorphosis differing by as much as 10 fold between families. As these data suggest that variation in the rate of development of the competent state has a genetic basis, and as a first step towards identifying the molecular basis to this variation, we have identified numerous genes that are differentially expressed later in larval development using a differential display approach. Spatial expression analysis of these genes suggests that they may be directly involved in the acquisition of competence, or may play a functional role in the postlarva following metamorphosis.
Resumo:
The homeostasis of GABA is critical to normal brain function. Extracellular levels of GABA are regulated mainly by plasmalemmal gamma-aminobutyric acid (GABA) transporters. Whereas the expression of GABA transporters has been extensively studied in rodents, validation of this data in other species, including humans, has been limited. As this information is crucial for our understanding of therapeutic options in human diseases such as epilepsy, we have compared, by immunocytochemistry, the distributions of the GABA transporters GAT-1 and GAT-3 in rats, cats, monkeys and humans. We demonstrate subtle differences between the results reported in the literature and our results, such as the predominance of GAT-1 labelling in neurons rather than astrocytes in the rat cortex. We note that the optimal localisation of GAT-1 in cats, monkeys and humans requires the use of an antibody against the human sequence carboxyl terminal region of GAT-1 rather than against the slightly different rat sequence. We demonstrate that GAT-3 is localised mainly to astrocytes in hindbrain and midbrain regions of rat brains. However, in species such as cats, monkeys and humans, additional strong immunolabelling of oligodendrocytes has also been observed. We suggest that differences in GAT distribution, especially the expression of GAT-3 by oligodendrocytes in humans, must be accommodated in extrapolating rodent models of GABA homeostasis to humans.
Resumo:
Infection of molluscs by digenean trematode parasites typically results in the repression of reproduction - the so-called parasitic castration. This is known to occur by altering the expression of a range of host neuropeptide genes. Here we analyse the expression levels of 10 members of POU, Pax, Sox and Hox transcription factor gene families, along with genes encoding FNIRFamide, prohormone convertase and P-tubulin, in the brain ganglia of actively reproducing (summer), non-reproducing (winter) and infected Haliotis asinina (a vetigastropod mollusc). A number of the regulatory genes are differentially expressed in parasitised H. asinina, but in only a few cases do expression patterns in infected animals match those occurring in animals where reproduction is normally repressed. (c) 2006 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
Resumo:
After the transition from in utero to newborn life, the neonate becomes solely reliant upon its own drug clearance processes to metabolise xenobiotics. Whilst most studies of neonatal hepatic drug elimination have focussed upon in vitro expression and activities of drug-metabolising enzymes, the rapid physiological changes in the early neonatal period of life also need to be considered. There are dramatic changes in neonatal liver blood how and hepatic oxygenation due to the loss of the umbilical blood supply, the increasing portal vein blood flow, and the gradual closure of the ductus venosus shunt during the first week of life. These changes which may well affect the capacity of neonatal hepatic drug metabolism. The hepatic expression of cytochromes P450 1A2, 2C, 2D6, 2E1 and 3A4 develop at different rates in the postnatal period, whilst 3A7 expression diminishes. Hepatic glucuronidation in the human neonate is relatively immature at birth, which contrasts with the considerably more mature neonatal hepatic sulfation activity. Limited in vivo studies show that the human neonate can significantly metabolise xenobiotics but clearance is considerably less compared with the older infant and adult. The neonatal population included in pharmacological studies is highly heterogeneous with respect to age, body weight, ductus venosus closure and disease processes, making it difficult to interpret data arising from human neonatal studies. Studies in the perfused foetal and neonatal sheep liver have demonstrated how the oxidative and conjugative hepatic elimination of drugs by the intact organ is significantly increased during the first week of life, highlighting that future studies will need to consider the profound physiological changes that may influence neonatal hepatic drug elimination shortly after birth.
Resumo:
Proteins secreted by and anchored on the surfaces of parasites are in intimate contact with host tissues. The transcriptome of infective cercariae of the blood fluke, Schistosoma mansoni, was screened using signal sequence trap to isolate cDNAs encoding predicted proteins with an N-terminal signal peptide. Twenty cDNA fragments were identified, most of which contained predicted signal peptides or transmembrane regions, including a novel putative seven-transmembrane receptor and a membrane-associated mitogen-activated protein kinase. The developmental expression pattern within different life-cycle stages ranged from ubiquitous to a transcript that was highly upregulated in the cercaria. A bioinformatics-based comparison of 100 signal peptides from each of schistosomes, humans, a parasitic nematode and Escherichia coli showed that differences in the sequence composition of signal peptides, notably the residues flanking the predicted cleavage site, might account for the negative bias exhibited in the processing of schistosome signal peptides in mammalian cells. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
Caveolae are an abundant feature of many animal cells. However, the exact function of caveolae remains unclear. We have used the zebrafish, Danio rerio, as a system to understand caveolae function focusing on the muscle-specific caveolar protein, caveolin-3 (Cav3). We have identified caveolin-1 (alpha and beta), caveolin-2 and Cav3 in the zebrafish. Zebrafish Cav3 has 72% identity to human CAV3, and the amino acids altered in human muscle diseases are conserved in the zebrafish protein. During embryonic development, cav3 expression is apparent by early segmentation stages in the first differentiating muscle precursors, the adaxial cells and slightly later in the notochord. cav3 expression appears in the somites during mid-segmentation stages and then later in the pectoral fins and facial muscles. Cav3 and caveolae are located along the entire sarcolemma of late stage embryonic muscle fibers, whereas beta-dystroglycan is restricted to the muscle fiber ends. Down-regulation of Cav3 expression causes gross muscle abnormalities and uncoordinated movement. Ultrastructural analysis of isolated muscle fibers reveals defects in myoblast fusion and disorganized myofibril and membrane systems. Expression of the zebrafish equivalent to a human muscular dystrophy mutant, CAV3P104L, causes severe disruption of muscle differentiation. In addition, knockdown of Cav3 resulted in a dramatic up-regulation of eng1a expression resulting in an increase in the number of muscle pioneer-like cells adjacent to the notochord. These studies provide new insights into the role of Cav3 in muscle development and demonstrate its requirement for correct intracellular organization and myoblast fusion.
Resumo:
The signal sequence trap technique was applied to identify genes coding for secreted and membrane bound proteins from Echinococcus granulosus, the etiologic agent of cystic hydatid disease. An E. granulosus protoscolex cDNA library was constructed in the AP-PST vector such that randomly primed cDNAs were fused with a placental alkaline phosphatase reporter gene lacking its endogenous signal peptide. E. granulosus cDNAs encoding a functional signal peptide were selected by their ability to rescue secretion of alkaline phosphatase by COS-7 cells that had been transfected with the cDNA library. Eighteen positive clones were identified and sequenced. Their deduced amino acid sequences showed significant similarity with amino acid transporters, Krebs cycle intermediates transporters, presenilins and vacuolar protein sorter proteins. Other cDNAs encoded secreted proteins without homologues. Three sequences were transcribed antisense to E. granulosus expressed sequence tags. All the mRNAs were expressed in protoscoleces and adult worms, but some of them were not found in oncospheres. The putative E. granulosus secreted and membrane bound proteins identified are likely to play important roles in the metabolism, development and survival in the host and represent potential targets for diagnosis, drugs and vaccines against E. granulosus. (c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was similar to 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.
Resumo:
Primary sensory olfactory axons arise from the olfactory neuroepithelium that lines the nasal cavity and then project via the olfactory nerve into the olfactory bulb. The P-galactoside binding lectin, galectin-1,and its laminin ligand have been implicated in the growth of these axons along this pathway. In galectin-1 null mutant mice, a subpopulation of primary sensory olfactory axons fails to reach its targets in the olfactory bulb. In the present study we examined the spatiotemporal expression pattern of galectin-1 in normal mice in order to understand its role in the development of the olfactory nerve pathway. At E15.5, when olfactory axons have already contacted the olfactory bulb, galectin-1 was expressed in the cartilage and mesenchyme surrounding the nasal cavity but was absent from the olfactory neuroepithelium, nerve and bulb. Between E16.5 and birth galectin-1 began to be expressed by olfactory nerve ensheathing cells in the lamina propria of the neuroepithelium and nerve fibre layer. Galectin-1 was neither expressed by primary sensory neurons in the olfactory neuroepithelium nor by their axons in the olfactory nerve. Laminin, a galectin-1 ligand, also exhibited a similar expression pattern in the embryonic olfactory nerve pathway. Our results reveal that galectin-1 is dynamically expressed by glial elements within the nerve fibre layer during a discrete period in the developing olfactory nerve pathway. Previous studies have reported galectin-1 acts as a substrate adhesion molecule by cross-linking primary sensory olfactory neurons to laminin. Thus, the coordinate expression of galectin-1 and laminin in the embryonic nerve fibre layer suggests that these molecules support the adhesion and fasciculation of axons en route to their glomerular targets.