104 resultados para Detection algorithms
em University of Queensland eSpace - Australia
Resumo:
Background: The multitude of motif detection algorithms developed to date have largely focused on the detection of patterns in primary sequence. Since sequence-dependent DNA structure and flexibility may also play a role in protein-DNA interactions, the simultaneous exploration of sequence-and structure-based hypotheses about the composition of binding sites and the ordering of features in a regulatory region should be considered as well. The consideration of structural features requires the development of new detection tools that can deal with data types other than primary sequence. Results: GANN ( available at http://bioinformatics.org.au/gann) is a machine learning tool for the detection of conserved features in DNA. The software suite contains programs to extract different regions of genomic DNA from flat files and convert these sequences to indices that reflect sequence and structural composition or the presence of specific protein binding sites. The machine learning component allows the classification of different types of sequences based on subsamples of these indices, and can identify the best combinations of indices and machine learning architecture for sequence discrimination. Another key feature of GANN is the replicated splitting of data into training and test sets, and the implementation of negative controls. In validation experiments, GANN successfully merged important sequence and structural features to yield good predictive models for synthetic and real regulatory regions. Conclusion: GANN is a flexible tool that can search through large sets of sequence and structural feature combinations to identify those that best characterize a set of sequences.
Resumo:
A robust semi-implicit central partial difference algorithm for the numerical solution of coupled stochastic parabolic partial differential equations (PDEs) is described. This can be used for calculating correlation functions of systems of interacting stochastic fields. Such field equations can arise in the description of Hamiltonian and open systems in the physics of nonlinear processes, and may include multiplicative noise sources. The algorithm can be used for studying the properties of nonlinear quantum or classical field theories. The general approach is outlined and applied to a specific example, namely the quantum statistical fluctuations of ultra-short optical pulses in chi((2)) parametric waveguides. This example uses a non-diagonal coherent state representation, and correctly predicts the sub-shot noise level spectral fluctuations observed in homodyne detection measurements. It is expected that the methods used wilt be applicable for higher-order correlation functions and other physical problems as well. A stochastic differencing technique for reducing sampling errors is also introduced. This involves solving nonlinear stochastic parabolic PDEs in combination with a reference process, which uses the Wigner representation in the example presented here. A computer implementation on MIMD parallel architectures is discussed. (C) 1997 Academic Press.
Resumo:
To maximise data output from single-shot astronomical images, the rejection of cosmic rays is important. We present the results of a benchmark trial comparing various cosmic ray rejection algorithms. The procedures assess relative performances and characteristics of the processes in cosmic ray detection, rates of false detections of true objects, and the quality of image cleaning and reconstruction. The cosmic ray rejection algorithms developed by Rhoads (2000, PASP, 112, 703), van Dokkum (2001, PASP, 113, 1420), Pych (2004, PASP, 116, 148), and the IRAF task xzap by Dickinson are tested using both simulated and real data. It is found that detection efficiency is independent of the density of cosmic rays in an image, being more strongly affected by the density of real objects in the field. As expected, spurious detections and alterations to real data in the cleaning process are also significantly increased by high object densities. We find the Rhoads' linear filtering method to produce the best performance in the detection of cosmic ray events; however, the popular van Dokkum algorithm exhibits the highest overall performance in terms of detection and cleaning.
Resumo:
In this paper we develop an evolutionary kernel-based time update algorithm to recursively estimate subset discrete lag models (including fullorder models) with a forgetting factor and a constant term, using the exactwindowed case. The algorithm applies to causality detection when the true relationship occurs with a continuous or a random delay. We then demonstrate the use of the proposed evolutionary algorithm to study the monthly mutual fund data, which come from the 'CRSP Survivor-bias free US Mutual Fund Database'. The results show that the NAV is an influential player on the international stage of global bond and stock markets.
Resumo:
In various signal-channel-estimation problems, the channel being estimated may be well approximated by a discrete finite impulse response (FIR) model with sparsely separated active or nonzero taps. A common approach to estimating such channels involves a discrete normalized least-mean-square (NLMS) adaptive FIR filter, every tap of which is adapted at each sample interval. Such an approach suffers from slow convergence rates and poor tracking when the required FIR filter is "long." Recently, NLMS-based algorithms have been proposed that employ least-squares-based structural detection techniques to exploit possible sparse channel structure and subsequently provide improved estimation performance. However, these algorithms perform poorly when there is a large dynamic range amongst the active taps. In this paper, we propose two modifications to the previous algorithms, which essentially remove this limitation. The modifications also significantly improve the applicability of the detection technique to structurally time varying channels. Importantly, for sparse channels, the computational cost of the newly proposed detection-guided NLMS estimator is only marginally greater than that of the standard NLMS estimator. Simulations demonstrate the favourable performance of the newly proposed algorithm. © 2006 IEEE.
Resumo:
Objective: The description and evaluation of the performance of a new real-time seizure detection algorithm in the newborn infant. Methods: The algorithm includes parallel fragmentation of EEG signal into waves; wave-feature extraction and averaging; elementary, preliminary and final detection. The algorithm detects EEG waves with heightened regularity, using wave intervals, amplitudes and shapes. The performance of the algorithm was assessed with the use of event-based and liberal and conservative time-based approaches and compared with the performance of Gotman's and Liu's algorithms. Results: The algorithm was assessed on multi-channel EEG records of 55 neonates including 17 with seizures. The algorithm showed sensitivities ranging 83-95% with positive predictive values (PPV) 48-77%. There were 2.0 false positive detections per hour. In comparison, Gotman's algorithm (with 30 s gap-closing procedure) displayed sensitivities of 45-88% and PPV 29-56%; with 7.4 false positives per hour and Liu's algorithm displayed sensitivities of 96-99%, and PPV 10-25%; with 15.7 false positives per hour. Conclusions: The wave-sequence analysis based algorithm displayed higher sensitivity, higher PPV and a substantially lower level of false positives than two previously published algorithms. Significance: The proposed algorithm provides a basis for major improvements in neonatal seizure detection and monitoring. Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.
Resumo:
A narrow absorption feature in an atomic or molecular gas (such as iodine or methane) is used as the frequency reference in many stabilized lasers. As part of the stabilization scheme an optical frequency dither is applied to the laser. In optical heterodyne experiments, this dither is transferred to the RF beat signal, reducing the spectral power density and hence the signal to noise ratio over that in the absence of dither. We removed the dither by mixing the raw beat signal with a dithered local oscillator signal. When the dither waveform is matched to that of the reference laser the output signal from the mixer is rendered dither free. Application of this method to a Winters iodine-stabilized helium-neon laser reduced the bandwidth of the beat signal from 6 MHz to 390 kHz, thereby lowering the detection threshold from 5 pW of laser power to 3 pW. In addition, a simple signal detection model is developed which predicts similar threshold reductions.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
A technique based on the polymerase chain reaction (PCR) for the specific detection of Phytophthora medicaginis was developed using nucleotide sequence information of the ribosomal DNA (rDNA) regions. The complete IGS 2 region between the 5 S gene of one rDNA repeat and the small subunit of the adjacent repeat was sequenced for P. medicaginis and related species. The entire nucleotide sequence length of the IGS 2 of P. medicaginis was 3566 bp. A pair of oligonucleotide primers (PPED04 and PPED05), which allowed amplification of a specific fragment (364 bp) within the IGS 2 of P. medicaginis using the PCR, was designed. Specific amplification of this fragment from P. medicaginis was highly sensitive, detecting template DNA as low as 4 ng and in a host-pathogen DNA ratio of 1000000:1. Specific PCR amplification using PPED04 and PPED05 was successful in detecting P. medicaginis in lucerne stems infected under glasshouse conditions and field infected lucerne roots. The procedures developed in this work have application to improved identification and detection of a wide range of Phytophthora spp. in plants and soil.
Resumo:
This communication describes an improved one-step solid-phase extraction method for the recovery of morphine (M), morphine-3-glucuronide (M3G), and morphine-6-glucuronide (M6G) from human plasma with reduced coextraction of endogenous plasma constituents, compared to that of the authors' previously reported method. The magnitude of the peak caused by endogenous plasma components in the chromatogram that eluted immediately before the retention time of M3G has been reduced (similar to 80%) significantly (p < 0.01) while achieving high extraction efficiencies for the compounds of interest, viz morphine, M6G, and M3G (93.8 +/- 2.5, 91.7 +/- 1.7, and 93.1 +/- 2.2%, respectively). Furthermore, when the improved solid-phase extraction method was used, the extraction cartridge-derived late-eluting peak (retention time 90 to 100 minutes) reported in our previous method, was no longer present in the plasma extracts. Therefore the combined effect of reducing the recovery of the endogenous components of plasma that chromatographed just before the retention time of M3G and the removal of the late-eluting, extraction cartridge-derived peak has resulted in a decrease in the chromatographic run-time to 20 minutes, thereby increasing the sample throughput by up to 100%.