2 resultados para Dermochelys coriacea
em University of Queensland eSpace - Australia
Resumo:
The leatherback turtle Dermochelys coriacea is considered to be at serious risk of global extinction, despite ongoing conservation efforts. Intensive long-term monitoring of a leatherback nesting population on Sandy Point (St. Croix, US Virgin Islands) offers a unique opportunity to quantify basic population parameters and evaluate effectiveness of nesting beach conservation practices. We report a significant increase in the number of females nesting annually from ca. 18-30 in the 1980s to 186 in 2001, with a corresponding increase in annual hatchling production from ca. 2000 to over 49,000. We then analyzed resighting data from 1991 to 2001 with an open robust-design capture-mark-recapture model to estimate annual nester survival and adult abundance for this population. The expected annual survival probability was estimated at ca. 0.893 (95% CL 0.87-0.92) and the population was estimated to be increasing ca. 13% pa since the early 1990s. Taken together with DNA fingerprinting that identify mother-daughter relations, our findings suggest that the increase in the size of the nesting population since 1991 was probably due to an aggressive program of beach protection and egg relocation initiated more than 20 years ago. Beach protection and egg relocation provide a simple and effective conservation strategy for this Northern Caribbean nesting population as long as adult survival at sea remains relatively high. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Time-depth recorders were used to investigate the diving performance and behaviour of two bimodally respiring turtle species, Rheodytes leukops and Emydura niacquarii, known to have a high and low reliance on aquatic respiration, respectively. Significant differences in diving performance between R. leukops and E. macquarii were observed in the number of dives/day (39.3 +/- 5.38 vs 112.2 +/- 11.73 dives/day; mean +/- SE), mean dive length (33.1 +/- 7.33 min vs 9.6 +/- 2.26 min) and maximum dive length (623 +/- 104.74 min vs 67.1 +/- 8.14 min), respectively. Differences in diving performance between R. leukops and E macquarii are attributed to the species' reliance (or lack thereof) upon aquatic respiration. Rheodytes leukops displayed a weak bimodal pattern of increased surfacing frequency in the early morning (05:00-07:00) and late afternoon (14:00-18:00), while E. macquarii displayed a strong bimodal pattern of elevated surfacing frequency over similar time periods. Daily patterns of increased surfacing frequency for both species failed to correlate with fluctuating aquatic Po-2 levels or water temperature, and may instead be explained by the heightened activity levels of both species during twilight.