48 resultados para Depletion allowances
em University of Queensland eSpace - Australia
Resumo:
Infections caused by the yeast Candida albicans represent an increasing threat to debilitated and immunosuppressed patients, and neutropenia is an important risk factor. Monoclonal antibody depletion of neutrophils in mice was used to study the role of these cells in host resistance. Ablation of neutrophils increased susceptibility to both systemic and vaginal challenge. The fungal burden in the kidney increased threefold on day 1, and 100-fold on day 4, and infection was associated with extensive tissue destruction. However, a striking feature of the disseminated disease in neutrophil-depleted animals was the altered pattern of organ involvement. The brain, which is one of the primary target organs in normal mice, was little affected. There was a threefold increase in the number of organisms recovered from the brains of neutrophil-depleted mice on day 4 after infection, but detectable abscesses were rare. In contrast, the heart, which in normal mice shows only minor lesions, developed severe tissue damage following neutrophil depletion. Mice deficient in C5 demonstrated both qualitative and quantitative increases in the severity of infection after neutrophil depletion when compared with C5-sufficient strains. The results are interpreted as reflecting organ-specific differences in the mechanisms of host resistance.
Resumo:
Background: The immune response to Porphyromonas gingivalis in the mouse abscess model is known to be dependent upon CD4 T-cell activation and the regulatory role of cytokines. The role of interleukin-10 (IL-10) in this mouse model was examined in vivo. Methods: One-week-old, female BALB/c mice were divided into 4 groups. Groups 1 and 2 were given intraperitoneal (ip) injections of phosphate buffered saline (PBS) weekly for 5 weeks. Group 3 was given an ip injection of rat immunoglobulin. Group 4 was injected with rat anti-IL-10 antibodies. At week 6, group 1 was sham-immunized with PBS, and groups 2, 3, and 4 were injected with P gingivalis lipopolysaccharide (Pg-LPS) weekly for 2 weeks. One week after the final immunization, delayed-type hypersensitivity (DTH) was assessed by footpad swelling to Pg-LPS. The level of serum antibodies to Pg-LPS and IFN-gamma (IFN-gamma) was determined by enzyme-linked immunosorbent assay. Dorsal abscess formation induced by the injection of viable P gingivalis was examined daily for 30 days. Results: The footpad swelling of the anti-IL-10-treated group (group 4) was significantly higher than that of groups 1 to 3. Similarly, the serum IFN-gamma level in group 4 was much higher than that of the other experimental groups. There was no significant difference in serum IgG antibodies to Pg-LPS in any of the experimental groups. However, the level of IgM antibodies in group 4 mice was significantly lower than that in groups 2 and 3. In addition, serum IgG1 was suppressed in group 4 mice, while IgG2a antibodies were raised. However, there was no difference observed between the levels of IgG2b and IgG3 antibodies in any group of mice. The lesions in sham-immunized mice (group 1) persisted for 30 days, and those in group 2 and 3 were undetected by day 18 and 20, respectively. In sharp contrast, lesions in group 4 had healed completely by day 13. Conclusions: This study has shown that IL-10 depletion in vivo in P gingivalis LPS-induced immune response in mice led to an elevated DTH response, an increase in serum IFN-gamma levels, and raised levels of IgG and IgG2a antibodies. Treatment with anti-IL-10 antibodies resulted in suppressed IgG I and IgM responses and a more rapid healing of abscesses than in non-IL-10-depleted mice. These results suggest that IL-10 depletion in Pg-LPS-induced immune response in mice may lead to a Th1-like immune response and provide strong protection against a subsequent challenge with live P gingivalis in an abscess model.
Resumo:
This study (1) investigated functional (capture rate, foraging success) and numerical (density) responses of bar-tailed godwits Limosa lapponica to an experimental decrease in densities of their prey, and (2) estimated seasonal depletion of the stock of their main prey, the mictyrid crab Mictyris longicarpus, in a subtropical estuary. It was predicted that if intake rates of the godwits are in the vicinity of the gradient section of a functional response curve, i.e. are directly determined by prey density, they will respond rapidly to experimental reduction in the density of their prey. Bar-tailed godwits did respond rapidly, both functionally and numerically, to a decrease in the density of M longicarpus, indicating that their intake rate was limited by food availability. The estimated seasonal depletion of the stocks of Mictyris by the godwits was 88 % of the initial standing stock. Despite the virtual disappearance of Mictyris from sediment samples through the course of a non-breeding season, local densities of godwits did not change between October and March, implying that adequate rates of intake could be maintained throughout their residence period.
Resumo:
Background. Activated dendritic cells (DC) initiate immune responses by presenting antigen, including alloantigen from tissue grafts, to T lymphocytes. The potential to deplete or inactivate differentiated-activated DC during allogeneic transplantation represents a new approach to immunosuppression. Methods. The authors investigated the potential of the monoclonal antibody CMRF-44, which has specificity for a DC-associated differentiation-activation antigen, to induce complement-mediated lysis of activated human DC. Peripheral blood mononuclear cells (PBMC), or purified DC preparations, were cultured overnight to activate endogenous DC, resulting in the expression of CNW-44 antigen and CD83. These were then treated with CMRF-44 and complement. Depletion of activated DC was monitored by flow cytometry. Results. Eighty-nine percent of activated (CD83(+)) DC in cultured PBMC were depleted by treatment with CMRF-44 and autologous serum (AS) (complement source; mean percentage of CD83(+)-CD14(-)-CD19(-) cells=0.06%; cf 0.50% for heat-inactivated AS controls, P
Resumo:
Background The degree of volume depletion in severe malaria is currently unknown, although knowledge of fluid compartment volumes can guide therapy. To assist management of severely ill children, and to test the hypothesis that volume changes in fluid compartments reflect disease severity, we measured body compartment volumes in Gabonese children with malaria. Methods and Findings Total body water volume (TBW) and extracellular water volume (ECW) were estimated in children with severe or moderate malaria and in convalescence by tracer dilution with heavy water and bromide, respectively. Intracellular water volume (ICW) was derived from these parameters. Bioelectrical impedance analysis estimates of TBW and ECW were calibrated and bioelectrical impedance analysis measurements were taken daily against dilution methods, until discharge. Sixteen children had severe and 19 moderate malaria. Severe childhood malaria was associated with depletion of TBW (mean [SD] of 37 [33] ml/kg, or 6.7% [6.0%]) relative to measurement at discharge. This is defined as mild dehydration in other conditions. ECW measurements were normal on admission in children with severe malaria and did not rise in the first few days of admission. Volumes in different compartments (TBW, ECW, and ICW) were not related to hyperlactataemia or other clinical and laboratory markers of disease severity. Moderate malaria was not associated with a depletion of TBW. Conclusions Significant hypovolaemia does not exacerbate complications of severe or moderate malaria. As rapid rehydration of children with malaria may have risks, we suggest that fluid replacement regimens should aim to correct fluid losses over 12-24 h.
Resumo:
Many diurnal planktivorous fish in coral reefs efficiently consume zooplankton drifting in the overlying water column. Our survey, carried out at two coral reefs in the Red Sea, showed that most of the diurnal planktivorous fish foraged near the bottom, close to the shelters from piscivores. The planktivorous fish were order of magnitude more abundant near (
Resumo:
Study Design, The study group consisted of 53 patients who underwent 75 operations for spine metastases. Patient and tumor demographic factors, preoperative nutritional status, and perioperative adjunctive therapy were retrospectively reviewed. Objective, To determine the risk factors for wound breakdown and infection in patients undergoing surgery for spinal metastases. Summary of Background Data. Spinal Fusion using spine implants may be associated with an infection rate of 5% or more. Surgery for spine metastases is associated with an infection rate of more than 10%. Factors other than the type of surgery performed may account for the greater infection rate. Methods. Data were obtained by reviewing patient records. Age, sex, and neurologic status of the patient; tumor type and site; and surgical details were noted. Adjunctive treatment with corticosteroids and radiotherapy was recorded, Nutritional status was evaluated by determining serum protein and serum albumin concentrations and by total lymphocyte count. Results. Wound breakdown and Infection occurred in 75 of 75 wounds. No patient or tumor demographic factors other than intraoperative blood loss (P < 0.1) were statistically associated with infection; The correlation between preoperative protein deficiency (P < 0.01) or perioperative corticosteroid administration (P < 0.10) and wound infection was significant. There was no statistical correlation between lymphocyte count or perioperative radiotherapy and wound infection. Conclusions, The results indicate that preoperative protein depletion and perioperative administration of corticosteroids are risk factors for wound infection in patients undergoing surgery for spine metastases, Perioperative correction of nutritional depletion and cessation of steroid therapy may reduce wound complications.
Resumo:
Many cervical cancers express the E7 protein of human papillomavirus 16 as a tumor-specific Ag (TSA). To establish the role of E7-specific T cell help in CD8(+) CTL-mediated tumor regression, C57BL/6J mice were immunized with E7 protein or with a peptide (GF001) comprising a minimal CTL epitope of E7, together with different adjuvants, Immunized mice were challenged with an E7-expressing tumor cell line, EL4.E7. Growth of EL4.E7 was reduced following immunization with E7 and Quil-A (an adjuvant that induced a Th1-type response to E7) or with GF001 and Quil-A, Depletion of CD8(+) cells, but not CD4(+) cells, from an immunized animal abrogated protection, confirming that E7-specific CTL are necessary and sufficient for TSA-specific protection in this model. Immunization with E7 and Algammulin (an alum-based adjuvant) induced a Th2-like response and provided; no tumor protection. To investigate whether a Th2 T helper response to E7 could prevent the development of an E7-specific CTL-mediated protection, mice were simultaneously immunized with E7/Algammulin and GF001/Quil-A or, alternatively, were immunized with GF011/Quil-A 8 wk after immunization with E7/Algammulin, Tumor protection was observed in each case. We conclude that an established Th2 response to a TSA does not prevent the development of TSA-specific tumor protective CTL.
Resumo:
Strawberry (Fragaria ananassa cv. Shikinari) cell suspension cultures carried out in shake flasks for 18 d were closely examined for cell growth, anthocyanin synthesis and the development of pigmented cells in relation to the uptake of carbohydrate, extracellular PO4, NO3, NH4, and calcium. Cell viability, extracellular anthocyanin content, pH and electrical conductivity of the broth were also monitored. The specific growth rate of strawberry cells at exponential phase was 0.27 and 0.28 d(-1) based on fresh and dry weight, respectively. Anthocyanin synthesis was observed to increase continuously to a maximum value of 0.86 mg/g fresh cell weight (FCW) at day 6, and was partially growth-associated. Anthocyanin synthesis was linearly related to the increase in pigmented cell ratio, which increased with time and reached a maximum value of ca. 70% at day 6 due to reduction in cell viability and depletion of substrate. Total carbohydrate uptake was closely associated with increase in cell growth, and glucose was utilized in preference to fructose. Nitrate and ammonia were consumed until 9 d of culture, but phosphate was completely absorbed within 4 d. Calcium was assimilated throughout the growth cycle. After 9 d, cell lysis was observed which resulted in the leakage of intracellular substances and a concomitant pH rise. Anthocyanin was never detected in the broth although the broth became darkly pigmented during the lysis period. This suggests that anthocyanin was synthesized only by viable pigmented cells, and degraded rapidly upon cell death and lysis. Based on the results of kinetic analysis, a model was developed by incorporating governing equations for the ratio of pigmented cells into a Bailey and Nicholson's model. This was verified by comparison with the experimental data. The results suggest Bat the model satisfactorily describes the strawberry cell culture process, and may thus be used for process optimization.
Resumo:
One of three lines of mice transgenic for the E6 and E7 genes of human papillomavirus type 16 (HPV16) expressed from an alpha A-crystallin promoter also expresses the transgene ectopically in the skin. This line, designated alpha ACE6E7#19, develops skin disease from 3 months of age, characterised by epidermal hyperplasia and eventual skin loss. Administration of complete Freund's adjuvant (CFA) to alpha ACE6E7#19 mice, but not to nontransgenic littermate controls, induced local epidermal hyperplasia which was histologically similar to the spontaneously arising skin pathology. Local application of 2,4-dinitrochlorobenzene (DNCB) to DNCB-sensitised aACE6E7#19 mice, but not DNCB-sensitised controls, also induced hyperplasia. Treatment with cyclosporin A (CsA) or systemic depletion of CD4+ cells significantly reduced the incidence of skin disease. These data suggest that local inflammation, and cytokines produced by T helper cells, contribute to the induction of hyperplastic skin disease in alpha ACE6E7#19 mice. Spontaneous skin disease with similar histological appearance, frequency, age of onset and severity in alpha ACE6E7#19 mice was observed in scid-/- aACE6E7#19 mice, despite immune paresis. Antigen-specific immune responses and T-cell cytokines a re therefore not necessary for the induction of skin disease. We propose that epidermal hyperplasia associated with HPV16 E6 and E7 expression in skin is accelerated by local secretion of pro-inflammatory cytokines, whose production can be enhanced by activated CD4+ T cells.
Resumo:
The role of T lymphocytes in host responses to sublethal systemic infection with Candida albicans was evaluated by mAb depletion of CD4(+) and CD8(+) cells from BALB/c and CBA/CaH mice, which develop mild and severe tissue damage, respectively. Depletion of CD4(+) lymphocytes from BALB/c mice markedly increased tissue damage, but did not alter the course of infection. In CBA/CaH mice, depletion of CD4+ cells abrogated tissue destruction in both brain and kidney at day 4 after infection, and significantly decreased fungal colonization in the brain. However, the severity of tissue lesions increased relative to controls from day 8 onwards. A small increase in tissue damage was evident in both mouse strains after depletion of CD8(+) cells. There were no major differences between days 4 end 8 after infection in cDNA cytokine profiles of CD4(+) lymphocytes from either BALB/c or CBA/CaH mice. After passive transfer into infected syngeneic recipients, spleen cells from infected CBA/CaH mice markedly increased tissue damage when compared to controls, and also caused a significant increase in fungal colonization in the brain. A similar transfer in BALB/c mice increased the number of inflammatory cells in and around the lesions, but had no effect on the fungal burden in brain and kidney. The data demonstrate that both CD4(+) and CD8(+) lymphocytes contribute to the reduction of tissue damage after systemic infection with C. albicans, and that the development and expression of CD4(+) lymphocyte effector function is influenced by the genetic background of the mouse.