7 resultados para Dental enamel

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to examine the enamel thickness of the maxillary primary incisors of preterm children with very low birth weight (< 1,500 g) compared to full-term children with normal birth weight. Methods: A total of 90 exfoliated maxillary primary central incisors were investigated using light microscopy and scanning electron microscopy (SEM). Three serial buccolingual ground sections of each tooth were examined under light microscopy, and maximum dimensions of the prenatally and postnatally formed enamel were measured. Results: The enamel of preterm teeth was approximately 20% thinner than that for fullterm teeth. Most of the reduction was observed in the prenatally formed enamel. This was 5 to 13 times thinner than that for full-term children (P < .001). The catch-up thickness of postnatally formed enamel did not compensate fully for the decrease in prenatal enamel (P < .001). Although none of the teeth used in this study had enamel defects visible to the naked eye, 52% of preterm teeth showed enamel hypoplasia under SEM, compared with only 16% found on full-term teeth (P < .001). These defects were present as pits or irregular, shallow areas of missing enamel. Conclusions: Preterm primary dental enamel is abnormal in surface quality, and is significantly thinner compared to full-term enamel. The thinner enamel is due mainly to reduced prenatal growth and results in smaller dimensions of the primary dentition.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphology, occlusal surface topography, macrowear, and microwear features of parrotfish pharyngeal teeth were investigated to relate microstructural characteristics to the function of the pharyngeal mill using scanning electron microscopy of whole and sectioned pharyngeal jaws and teeth. Pharyngeal tooth migration is anterior in the lower jaw (fifth ceratobranchial) and posterior in the upper jaw (paired third pharyngobranchials), making the interaction of occlusal surfaces and wear-generating forces complex. The extent of wear can be used to define three regions through which teeth migrate: a region containing newly erupted teeth showing little or no wear; a midregion in which the apical enameloid is swiftly worn; and a region containing teeth with only basal enameloid remaining, which shows low to moderate wear. The shape of the occlusal surface alters as the teeth progress along the pharyngeal jaw, generating conditions that appear suited to the reduction of coral particles. It is likely that the interaction between these particles and algal cells during the process of the rendering of the former is responsible for the rupture of the latter, with the consequent liberation of cell contents from which parrotfish obtain their nutrients.