93 resultados para Dental chemistry.
em University of Queensland eSpace - Australia
Resumo:
Under current workplace health and safety legislation, the owners and managers of a dental practice have a legal responsibility to provide staff with a safe working environment. In this article, the emphasis will be on four common areas of risk: posture when seated, handling scalpel blades, flooring and lighting.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
The dental profession has possessed traditional standards of cross-infection control but the recent expression of real concerns by both the public and the profession over the transmissibility of infectious diseases in the dental surgery has demanded a formalized and extended approach to teaching cross-infection control in the dental curriculum. Clear curriculum content must be formulated within contemporary Workplace Health and Safety Guidelines and the Strategic Plan of the Dental School or academic health centre. The full integration demands that the area is taught as a discrete entity but recognized as an intrinsic part of each clinical encounter. This paper discusses the structure and integration of cross-infection control into the curriculum at the University of Queensland Dental School.
Resumo:
Recent studies suggest Helicobacter pylori is spread by faecal-oral or oral-oral transmission. Gastroenterologists who are exposed to gastric secretions and saliva have a high prevalence of H. pylori infection. Venous blood was obtained from 92 dentists, 40 dental nurses, 33 fifth year and 30 first year dental students. An ELISA assay was used to detect H. pylori IgG antibodies. Results were compared with an age and sex matched normal population. The prevalence of H. pylori infection in dentists, dental nurses, fifth year dental students and first year dental students were 23 per cent, 18 per cent, 18 per cent and 16 per cent, respectively. There were no significant differences when compared with the normal population controls. The prevalence of H. pylori antibody was not significantly increased with years of practice or patient contact time in dentists and dental nurses. Helicobacter pylori infection is uncommon in dental professionals working in the oral cavity.
Resumo:
The chemistry of copper patination was investigated by two series of experiments. The chemistry of an aqueous copper-sulphate solution was studied at concentrations and pH values near those predicted in an electrolyte on copper exposed to the atmosphere. The electrochemical reactions in an electrolyte in contact with cuprite were investigated in a reaction vessel which used cuprite powder in artificial rainwater to study the electrochemistry of the atmospheric corrosion and patination of copper. Typical sulphate concentrations in rainwater are sufficient to precipitate posnjakite (Cu4SO4(OH)(6)2H(2)O)), a possible precursor to brochantite, within an hour of wetting a cuprite surface. Brochantite (Cu4SO4(OH)(6)), the most commonly found copper salt in natural patinas is responsible for their green appearance. Precipitation of brochantite from the electrolyte resulted from an increase in pH due to the cathodic reduction of oxygen and an increase in cupric ion concentrations by cuprite oxidation. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The effect of acidic treatments on N2O reduction over Ni catalysts supported on activated carbon was systematically studied. The catalysts were characterized by N-2 adsorption, mass titration, temperature-programmed desorption (TPD), and X-ray photoelectron spectrometry (XPS). It is found that surface chemistry plays an important role in N2O-carbon reaction catalyzed by Ni catalyst. HNO3 treatment produces more active acidic surface groups such as carboxyl and lactone, resulting in a more uniform catalyst dispersion and higher catalytic activity. However, HCl treatment decreases active acidic groups and increases the inactive groups, playing an opposite role in the catalyst dispersion and catalytic activity. A thorough discussion of the mechanism of the N2O catalytic reduction is made based upon results from isothermal reactions, temperature-programmed reactions (TPR) and characterization of catalysts. The effect of acidic treatment on pore structure is also discussed. (C) 1999 Elsevier Science B.V. All rights reserved.