33 resultados para Decomposition algorithms
em University of Queensland eSpace - Australia
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of given degree over a finite field. We also show how to extend existing factorisation algorithms over skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.
Resumo:
A Latin square is pan-Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every i j. A Latin square is atomic if all of its conjugates are pan-Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1-factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan-Hamiltonian Latin square of order n describes a perfect 1-factorization of Kn,n, and vice versa. Perfect 1-factorizations of Kn,n can be constructed from a perfect 1-factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn-square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self-orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self-orthogonal Latin squares in the same main class as a given Latin square.
Resumo:
A 4-cycle in a tripartite graph with vertex partition {V-1, V-2, V-3} is said to be gregarious if it has at least one vertex in each V-i, 1 less than or equal to i less than or equal to 3. In this paper, necessary and sufficient conditions are given for the existence of an edge-disjoint decomposition of any complete tripartite graph into gregarious 4-cycles.
Resumo:
Despite many successes of conventional DNA sequencing methods, some DNAs remain difficult or impossible to sequence. Unsequenceable regions occur in the genomes of many biologically important organisms, including the human genome. Such regions range in length from tens to millions of bases, and may contain valuable information such as the sequences of important genes. The authors have recently developed a technique that renders a wide range of problematic DNAs amenable to sequencing. The technique is known as sequence analysis via mutagenesis (SAM). This paper presents a number of algorithms for analysing and interpreting data generated by this technique.
Resumo:
The BR algorithm is a novel and efficient method to find all eigenvalues of upper Hessenberg matrices and has never been applied to eigenanalysis for power system small signal stability. This paper analyzes differences between the BR and the QR algorithms with performance comparison in terms of CPU time based on stopping criteria and storage requirement. The BR algorithm utilizes accelerating strategies to improve its performance when computing eigenvalues of narrowly banded, nearly tridiagonal upper Hessenberg matrices. These strategies significantly reduce the computation time at a reasonable level of precision. Compared with the QR algorithm, the BR algorithm requires fewer iteration steps and less storage space without depriving of appropriate precision in solving eigenvalue problems of large-scale power systems. Numerical examples demonstrate the efficiency of the BR algorithm in pursuing eigenanalysis tasks of 39-, 68-, 115-, 300-, and 600-bus systems. Experiment results suggest that the BR algorithm is a more efficient algorithm for large-scale power system small signal stability eigenanalysis.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
The cost of spatial join processing can be very high because of the large sizes of spatial objects and the computation-intensive spatial operations. While parallel processing seems a natural solution to this problem, it is not clear how spatial data can be partitioned for this purpose. Various spatial data partitioning methods are examined in this paper. A framework combining the data-partitioning techniques used by most parallel join algorithms in relational databases and the filter-and-refine strategy for spatial operation processing is proposed for parallel spatial join processing. Object duplication caused by multi-assignment in spatial data partitioning can result in extra CPU cost as well as extra communication cost. We find that the key to overcome this problem is to preserve spatial locality in task decomposition. We show in this paper that a near-optimal speedup can be achieved for parallel spatial join processing using our new algorithms.
Resumo:
Extended gcd calculation has a long history and plays an important role in computational number theory and linear algebra. Recent results have shown that finding optimal multipliers in extended gcd calculations is difficult. We present an algorithm which uses lattice basis reduction to produce small integer multipliers x(1), ..., x(m) for the equation s = gcd (s(1), ..., s(m)) = x(1)s(1) + ... + x(m)s(m), where s1, ... , s(m) are given integers. The method generalises to produce small unimodular transformation matrices for computing the Hermite normal form of an integer matrix.
Resumo:
We tested the effects of four data characteristics on the results of reserve selection algorithms. The data characteristics were nestedness of features (land types in this case), rarity of features, size variation of sites (potential reserves) and size of data sets (numbers of sites and features). We manipulated data sets to produce three levels, with replication, of each of these data characteristics while holding the other three characteristics constant. We then used an optimizing algorithm and three heuristic algorithms to select sites to solve several reservation problems. We measured efficiency as the number or total area of selected sites, indicating the relative cost of a reserve system. Higher nestedness increased the efficiency of all algorithms (reduced the total cost of new reserves). Higher rarity reduced the efficiency of all algorithms (increased the total cost of new reserves). More variation in site size increased the efficiency of all algorithms expressed in terms of total area of selected sites. We measured the suboptimality of heuristic algorithms as the percentage increase of their results over optimal (minimum possible) results. Suboptimality is a measure of the reliability of heuristics as indicative costing analyses. Higher rarity reduced the suboptimality of heuristics (increased their reliability) and there is some evidence that more size variation did the same for the total area of selected sites. We discuss the implications of these results for the use of reserve selection algorithms as indicative and real-world planning tools.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.