42 resultados para Database query languages
em University of Queensland eSpace - Australia
Resumo:
As end-user computing becomes more pervasive, an organization's success increasingly depends on the ability of end-users, usually in managerial positions, to extract appropriate data from both internal and external sources. Many of these data sources include or are derived from the organization's accounting information systems. Managerial end-users with different personal characteristics and approaches are likely to compose queries of differing levels of accuracy when searching the data contained within these accounting information systems. This research investigates how cognitive style elements of personality influence managerial end-user performance in database querying tasks. A laboratory experiment was conducted in which participants generated queries to retrieve information from an accounting information system to satisfy typical information requirements. The experiment investigated the influence of personality on the accuracy of queries of varying degrees of complexity. Relying on the Myers–Briggs personality instrument, results show that perceiving individuals (as opposed to judging individuals) who rely on intuition (as opposed to sensing) composed queries more accurately. As expected, query complexity and academic performance also explain the success of data extraction tasks.
Perception, intuition and database queries: Personality factors affecting database query performance
Resumo:
This paper examines the effects of information request ambiguity and construct incongruence on end user's ability to develop SQL queries with an interactive relational database query language. In this experiment, ambiguity in information requests adversely affected accuracy and efficiency. Incongruities among the information request, the query syntax, and the data representation adversely affected accuracy, efficiency, and confidence. The results for ambiguity suggest that organizations might elicit better query development if end users were sensitized to the nature of ambiguities that could arise in their business contexts. End users could translate natural language queries into pseudo-SQL that could be examined for precision before the queries were developed. The results for incongruence suggest that better query development might ensue if semantic distances could be reduced by giving users data representations and database views that maximize construct congruence for the kinds of queries in typical domains. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The schema of an information system can significantly impact the ability of end users to efficiently and effectively retrieve the information they need. Obtaining quickly the appropriate data increases the likelihood that an organization will make good decisions and respond adeptly to challenges. This research presents and validates a methodology for evaluating, ex ante, the relative desirability of alternative instantiations of a model of data. In contrast to prior research, each instantiation is based on a different formal theory. This research theorizes that the instantiation that yields the lowest weighted average query complexity for a representative sample of information requests is the most desirable instantiation for end-user queries. The theory was validated by an experiment that compared end-user performance using an instantiation of a data structure based on the relational model of data with performance using the corresponding instantiation of the data structure based on the object-relational model of data. Complexity was measured using three different Halstead metrics: program length, difficulty, and effort. For a representative sample of queries, the average complexity using each instantiation was calculated. As theorized, end users querying the instantiation with the lower average complexity made fewer semantic errors, i.e., were more effective at composing queries. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Models of plant architecture allow us to explore how genotype environment interactions effect the development of plant phenotypes. Such models generate masses of data organised in complex hierarchies. This paper presents a generic system for creating and automatically populating a relational database from data generated by the widely used L-system approach to modelling plant morphogenesis. Techniques from compiler technology are applied to generate attributes (new fields) in the database, to simplify query development for the recursively-structured branching relationship. Use of biological terminology in an interactive query builder contributes towards making the system biologist-friendly. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Multiresolution Triangular Mesh (MTM) models are widely used to improve the performance of large terrain visualization by replacing the original model with a simplified one. MTM models, which consist of both original and simplified data, are commonly stored in spatial database systems due to their size. The relatively slow access speed of disks makes data retrieval the bottleneck of such terrain visualization systems. Existing spatial access methods proposed to address this problem rely on main-memory MTM models, which leads to significant overhead during query processing. In this paper, we approach the problem from a new perspective and propose a novel MTM called direct mesh that is designed specifically for secondary storage. It supports available indexing methods natively and requires no modification to MTM structure. Experiment results, which are based on two real-world data sets, show an average performance improvement of 5-10 times over the existing methods.
Resumo:
In many advanced applications, data are described by multiple high-dimensional features. Moreover, different queries may weight these features differently; some may not even specify all the features. In this paper, we propose our solution to support efficient query processing in these applications. We devise a novel representation that compactly captures f features into two components: The first component is a 2D vector that reflects a distance range ( minimum and maximum values) of the f features with respect to a reference point ( the center of the space) in a metric space and the second component is a bit signature, with two bits per dimension, obtained by analyzing each feature's descending energy histogram. This representation enables two levels of filtering: The first component prunes away points that do not share similar distance ranges, while the bit signature filters away points based on the dimensions of the relevant features. Moreover, the representation facilitates the use of a single index structure to further speed up processing. We employ the classical B+-tree for this purpose. We also propose a KNN search algorithm that exploits the access orders of critical dimensions of highly selective features and partial distances to prune the search space more effectively. Our extensive experiments on both real-life and synthetic data sets show that the proposed solution offers significant performance advantages over sequential scan and retrieval methods using single and multiple VA-files.
Resumo:
A progressive spatial query retrieves spatial data based on previous queries (e.g., to fetch data in a more restricted area with higher resolution). A direct query, on the other side, is defined as an isolated window query. A multi-resolution spatial database system should support both progressive queries and traditional direct queries. It is conceptually challenging to support both types of query at the same time, as direct queries favour location-based data clustering, whereas progressive queries require fragmented data clustered by resolutions. Two new scaleless data structures are proposed in this paper. Experimental results using both synthetic and real world datasets demonstrate that the query processing time based on the new multiresolution approaches is comparable and often better than multi-representation data structures for both types of queries.
Resumo:
Spatial data are particularly useful in mobile environments. However, due to the low bandwidth of most wireless networks, developing large spatial database applications becomes a challenging process. In this paper, we provide the first attempt to combine two important techniques, multiresolution spatial data structure and semantic caching, towards efficient spatial query processing in mobile environments. Based on the study of the characteristics of multiresolution spatial data (MSD) and multiresolution spatial query, we propose a new semantic caching model called Multiresolution Semantic Caching (MSC) for caching MSD in mobile environments. MSC enriches the traditional three-category query processing in semantic cache to five categories, thus improving the performance in three ways: 1) a reduction in the amount and complexity of the remainder queries; 2) the redundant transmission of spatial data already residing in a cache is avoided; 3) a provision for satisfactory answers before 100% query results have been transmitted to the client side. Our extensive experiments on a very large and complex real spatial database show that MSC outperforms the traditional semantic caching models significantly
Resumo:
Multiresolution (or multi-scale) techniques make it possible for Web-based GIS applications to access large dataset. The performance of such systems relies on data transmission over network and multiresolution query processing. In the literature the latter has received little research attention so far, and the existing methods are not capable of processing large dataset. In this paper, we aim to improve multiresolution query processing in an online environment. A cost model for such query is proposed first, followed by three strategies for its optimization. Significant theoretical improvement can be observed when comparing against available methods. Application of these strategies is also discussed, and similar performance enhancement can be expected if implemented in online GIS applications.
Resumo:
A k-NN query finds the k nearest-neighbors of a given point from a point database. When it is sufficient to measure object distance using the Euclidian distance, the key to efficient k-NN query processing is to fetch and check the distances of a minimum number of points from the database. For many applications, such as vehicle movement along road networks or rover and animal movement along terrain surfaces, the distance is only meaningful when it is along a valid movement path. For this type of k-NN queries, the focus of efficient query processing is to minimize the cost of computing distances using the environment data (such as the road network data and the terrain data), which can be several orders of magnitude larger than that of the point data. Efficient processing of k-NN queries based on the Euclidian distance or the road network distance has been investigated extensively in the past. In this paper, we investigate the problem of surface k-NN query processing, where the distance is calculated from the shortest path along a terrain surface. This problem is very challenging, as the terrain data can be very large and the computational cost of finding shortest paths is very high. We propose an efficient solution based on multiresolution terrain models. Our approach eliminates the need of costly process of finding shortest paths by ranking objects using estimated lower and upper bounds of distance on multiresolution terrain models.
Resumo:
Many emerging applications benefit from the extraction of geospatial data specified at different resolutions for viewing purposes. Data must also be topologically accurate and up-to-date as it often represents real-world changing phenomena. Current multiresolution schemes use complex opaque data types, which limit the capacity for in-database object manipulation. By using z-values and B+trees to support multiresolution retrieval, objects are fragmented in such a way that updates to objects or object parts are executed using standard SQL (Structured Query Language) statements as opposed to procedural functions. Our approach is compared to a current model, using complex data types indexed under a 3D (three-dimensional) R-tree, and shows better performance for retrieval over realistic window sizes and data loads. Updates with the R-tree are slower and preclude the feasibility of its use in time-critical applications whereas, predictably, projecting the issue to a one-dimensional index allows constant updates using z-values to be implemented more efficiently.