23 resultados para Data security
em University of Queensland eSpace - Australia
Resumo:
We describe a tool for analysing information flow in security hardware. It identifies both sub-circuits critical to the preservation of security as well as the potential for information flow due to hardware failure. The tool allows for the composition of both logical and physical views of circuit designs. An example based on a cryptographic device is provided.
Resumo:
One of the obstacles to improved security of the Internet is ad hoc development of technologies with different design goals and different security goals. This paper proposes reconceptualizing the Internet as a secure distributed system, focusing specifically on the application layer. The notion is to redesign specific functionality, based on principles discovered in research on distributed systems in the decades since the initial development of the Internet. Because of the problems in retrofitting new technology across millions of clients and servers, any options with prospects of success must support backward compatibility. This paper outlines a possible new architecture for internet-based mail which would replace existing protocols by a more secure framework. To maintain backward compatibility, initial implementation could offer a web browser-based front end but the longer-term approach would be to implement the system using appropriate models of replication. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Online multimedia data needs to be encrypted for access control. To be capable of working on mobile devices such as pocket PC and mobile phones, lightweight video encryption algorithms should be proposed. The two major problems in these algorithms are that they are either not fast enough or unable to work on highly compressed data stream. In this paper, we proposed a new lightweight encryption algorithm based on Huffman error diffusion. It is a selective algorithm working on compressed data. By carefully choosing the most significant parts (MSP), high performance is achieved with proper security. Experimental results has proved the algorithm to be fast. secure: and compression-compatible.
Resumo:
User requirements of multimedia authentication are various. In some cases, the user requires an authentication system to monitor a set of specific areas with respective sensitivity while neglecting other modification. Most current existing fragile watermarking schemes are mixed systems, which can not satisfy accurate user requirements. Therefore, in this paper we designed a sensor-based multimedia authentication architecture. This system consists of sensor combinations and a fuzzy response logic system. A sensor is designed to strictly respond to given area tampering of a certain type. With this scheme, any complicated authentication requirement can be satisfied, and many problems such as error tolerant tamper method detection will be easily resolved. We also provided experiments to demonstrate the implementation of the sensor-based system
Resumo:
Streaming video application requires high security as well as high computational performance. In video encryption, traditional selective algorithms have been used to partially encrypt the relatively important data in order to satisfy the streaming performance requirement. Most video selective encryption algorithms are inherited from still image encryption algorithms, the encryption on motion vector data is not considered. The assumption is that motion vector data are not as important as pixel image data. Unfortunately, in some cases, motion vector itself may be sufficient enough to leak out useful video information. Normally motion vector data consume over half of the whole video stream bandwidth, neglecting their security may be unwise. In this paper, we target this security problem and illustrate attacks at two different levels that can restore useful video information using motion vectors only. Further, an information analysis is made and a motion vector information model is built. Based on this model, we describe a new motion vector encryption algorithm called MVEA. We show the experimental results of MVEA. The security strength and performance of the algorithm are also evaluated.
Resumo:
Context information is used by pervasive networking and context-aware programs to adapt intelligently to different environments and user tasks. As the context information is potentially sensitive, it is often necessary to provide privacy protection mechanisms for users. These mechanisms are intended to prevent breaches of user privacy through unauthorised context disclosure. To be effective, such mechanisms should not only support user specified context disclosure rules, but also the disclosure of context at different granularities. In this paper we describe a new obfuscation mechanism that can adjust the granularity of different types of context information to meet disclosure requirements stated by the owner of the context information. These requirements are specified using a preference model we developed previously and have since extended to provide granularity control. The obfuscation process is supported by our novel use of ontological descriptions that capture the granularity relationship between instances of an object type.
Resumo:
Our research described in this paper identifies a three part premise relating to the spyware paradigm. Firstly the data suggests spyware is proliferating at an exponential rate. Secondly ongoing research confirms that spyware produces many security risks – including that of privacy/confidentiality breaches via illicit data collection and reporting. Thirdly, anti-spyware controls are improving but are still considered problematic for several reasons. Our research then concludes that control measures to counter this very significant challenge should merit compliance auditing – and this auditing may effectively target the vital message passing performed by all illicit data collection spyware. Our research then evolves into an experiment involving the design and implementation of a software audit tool to conduct the desired compliance auditing. The software audit tool is positioned at the protected network’s gateway. The software audit tool uses ‘phone-home’ IP addresses as spyware signatures to detect the presence of the offending software. The audit tool also has the capability to differentiate legitimate message passing software from that produced by spyware – and ‘learn’ both new spyware signatures and new legitimate message passing profiles. The testing stage of the software has proven successful – albeit using very limited levels of network message passing variety and frequency.