4 resultados para Data compression (Telecommunication)
em University of Queensland eSpace - Australia
Resumo:
The structure and infrastructure of the Mexican technical literature was determined. A representative database of technical articles was extracted from the Science Citation Index for the year 2002, with each article containing at least one author with a Mexican address. Many different manual and statistical clustering methods were used to identify the structure of the technical literature (especially the science and technology core competencies). One of the pervasive technical topics identified from the clustering, thin films research, was analyzed further using bibliometrics, in order to identify the infrastructure of this technology. Published by Elsevier Inc.
Resumo:
Pattern discovery in temporal event sequences is of great importance in many application domains, such as telecommunication network fault analysis. In reality, not every type of event has an accurate timestamp. Some of them, defined as inaccurate events may only have an interval as possible time of occurrence. The existence of inaccurate events may cause uncertainty in event ordering. The traditional support model cannot deal with this uncertainty, which would cause some interesting patterns to be missing. A new concept, precise support, is introduced to evaluate the probability of a pattern contained in a sequence. Based on this new metric, we define the uncertainty model and present an algorithm to discover interesting patterns in the sequence database that has one type of inaccurate event. In our model, the number of types of inaccurate events can be extended to k readily, however, at a cost of increasing computational complexity.
Resumo:
A hydrogel intervertebral disc (lVD) model consisting of an inner nucleus core and an outer anulus ring was manufactured from 30 and 35% by weight Poly(vinyl alcohol) hydrogel (PVA-H) concentrations and subjected to axial compression in between saturated porous endplates at 200 N for 11 h, 30 min. Repeat experiments (n = 4) on different samples (N = 2) show good reproducibility of fluid loss and axial deformation. An axisymmetric nonlinear poroelastic finite element model with variable permeability was developed using commercial finite element software to compare axial deformation and predicted fluid loss with experimental data. The FE predictions indicate differential fluid loss similar to that of biological IVDs, with the nucleus losing more water than the anulus, and there is overall good agreement between experimental and finite element predicted fluid loss. The stress distribution pattern indicates important similarities with the biological lVD that includes stress transference from the nucleus to the anulus upon sustained loading and renders it suitable as a model that can be used in future studies to better understand the role of fluid and stress in biological IVDs. (C) 2005 Springer Science + Business Media, Inc.