5 resultados para Dance in motion pictures, television, etc.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several mechanisms for self-enhancing feedback instabilities in marine ecosystems are identified and briefly elaborated. It appears that adverse phases of operation may be abruptly triggered by explosive breakouts in abundance of one or more previously suppressed populations. Moreover, an evident capacity of marine organisms to accomplish extensive geographic habitat expansions may expand and perpetuate a breakout event. This set of conceptual elements provides a framework for interpretation of a sequence of events that has occurred in the Northern Benguela Current Large Marine Ecosystem (off south-western Africa). This history can illustrate how multiple feedback loops might interact with one another in unanticipated and quite malignant ways, leading not only to collapse of customary resource stocks but also to degradation of the ecosystem to such an extent that disruption of customary goods and services may go beyond fisheries alone to adversely affect other major global ecosystem concerns (e.g. proliferations of jellyfish and other slimy, stingy, toxic and/or noxious organisms, perhaps even climate change itself, etc.). The wisdom of management interventions designed to interrupt an adverse mode of feedback operation is pondered. Research pathways are proposed that may lead to improved insights needed: (i) to avoid potential 'triggers' that might set adverse phases of feedback loop operation into motion; and (ii) to diagnose and properly evaluate plausible actions to reverse adverse phases of feedback operation that might already have been set in motion. These pathways include the drawing of inferences from available 'quasi-experiments' produced either by short-term climatic variation or inadvertently in the course of biased exploitation practices, and inter-regional applications of the comparative method of science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perceptual rivalry is an oscillation of conscious experience that takes place despite univarying, if ambiguous, sensory input. Much current interest is focused on the controversy over the neural site of binocular rivalry, a variety of perceptual rivalry for which a number of different cortical regions have been implicated. Debate continues over the relative role of higher levels of processing compared with primary visual cortex and the suggestion that different forms of rivalry involve different cortical areas. Here we show that the temporal pattern of disappearance and reappearance in motion-induced blindness (MIB) (Bonneh et al, 2001 Nature 411 798-801) is highly correlated with the pattern of oscillation reported during binocular rivalry in the same individual. This correlation holds over a wide range of inter-individual variation. Temporal similarity in the two phenomena was strikingly confirmed by the effects of the hallucinogen LSD, which produced the same, extraordinary, pattern of increased rhythmicity in both kinds of perceptual oscillation. Furthermore, MIB demonstrates the two properties previously considered characteristic of binocular rivalry. Namely the distribution of dominance periods can be approximated by a gamma distribution and, in line with Levelt's second proposition of binocular rivalry, predominance of one perceptual phase can be increased through a reduction in the predominance time of the opposing phase. We conclude that (i) MIB is a form of perceptual rivalry, and (ii) there may be a common oscillator responsible for timing aspects of all forms of perceptual rivalry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although breathing perturbs balance, in healthy individuals little sway is detected in ground reaction forces because small movements of the spine and lower limbs compensate for the postural disturbance. When people have chronic low back pain (LBP), sway at the ground is increased, possibly as a result of reduced compensatory motion of the trunk. The aim of this study was to determine whether postural compensation for breathing is reduced during experimentally induced pain. Subjects stood on a force plate with eyes open, eyes closed, and while breathing with hypercapnoea before and after injection of hypertonic saline into the right lumbar longissimus muscle to induce LBP. Motion of the lumbar spine, pelvis, and lower limbs was measured with four inclinometers fixed over bony landmarks. During experimental pain, motion of the trunk in association with breathing was reduced. However, despite this reduction in motion, there was no increase in postural sway with breathing. These data suggest that increased body sway with breathing in people with chronic LBP is not simply because of reduced trunk movement, but instead, indicates changes in coordination by the central nervous system that are not replicated by experimental nociceptor stimulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: In this paper, we present a unified electrodynamic heart model that permits simulations of the body surface potentials generated by the heart in motion. The inclusion of motion in the heart model significantly improves the accuracy of the simulated body surface potentials and therefore also the 12-lead ECG. Methods: The key step is to construct an electromechanical heart model. The cardiac excitation propagation is simulated by an electrical heart model, and the resulting cardiac active forces are used to calculate the ventricular wall motion based on a mechanical model. The source-field point relative position changes during heart systole and diastole. These can be obtained, and then used to calculate body surface ECG based on the electrical heart-torso model. Results: An electromechanical biventricular heart model is constructed and a standard 12-lead ECG is simulated. Compared with a simulated ECG based on the static electrical heart model, the simulated ECG based on the dynamic heart model is more accordant with a clinically recorded ECG, especially for the ST segment and T wave of a V1-V6 lead ECG. For slight-degree myocardial ischemia ECG simulation, the ST segment and T wave changes can be observed from the simulated ECG based on a dynamic heart model, while the ST segment and T wave of simulated ECG based on a static heart model is almost unchanged when compared with a normal ECG. Conclusions: This study confirms the importance of the mechanical factor in the ECG simulation. The dynamic heart model could provide more accurate ECG simulation, especially for myocardial ischemia or infarction simulation, since the main ECG changes occur at the ST segment and T wave, which correspond with cardiac systole and diastole phases.