2 resultados para DUST FORMATION

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results from 2 years of dust deposition monitoring in a 10-year-old Pinus nigra plantation near Lake Tekapo are presented. They show that recently established plantations significantly enhance dust deposition rates. This could reverse a cycle of soil loss and enhance vertical accretion of soil, which would provide more options for future land use. However, observations indicate that even under such enhanced conditions for soil formation, it would take several thousand years to replace the soil lost to erosion since European farming practices were first introduced to the northern section of the Mackenzie Basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive observed H alpha and R-band luminosity densities of an H I-selected sample of nearby galaxies using the SINGG sample to be l'(H alpha) = (9.4 +/- 1.8) x 10(38) h(70) ergs s(-1) Mpc(-3) for H alpha and l'(R) = (4.4 +/- 9.7) x 10(37) h(70) ergs s(-1) angstrom(-1) Mpc(-3) in the R band. This R-band luminosity density is approximately 70% of that found by the Sloan Digital Sky Survey. This leads to a local star formation rate density of log ((rho)over dot(SFR) [M-circle dot yr(-1) Mpc(-3)]) = -1.80(-0.07)(+0.13)(random) +/- 0.03(systematic) + log (h(70)) after applying a mean internal extinction correction of 0.82 mag. The gas cycling time of this sample is found to be t(gas) = 7.5(-2.1)(+1.3) Gyr, and the volume-averaged equivalent width of the SINGG galaxies is EW(H alpha) = 28.8(-4.7)(+7.2) angstrom (21.2-3.5+4.2 angstrom without internal dust correction). As with similar surveys, these results imply that (rho)over dot(SFR)(z) decreases drastically from z similar to 1.5 to the present. A comparison of the dynamical masses of the SINGG galaxies evaluated at their optical limits with their stellar and H I masses shows significant evidence of downsizing: the most massive galaxies have a larger fraction of their mass locked up in stars compared with H I, while the opposite is true for less massive galaxies. We show that the application of the Kennicutt star formation law to a galaxy having the median orbital time at the optical limit of this sample results in a star formation rate decay with cosmic time similar to that given by the. (rho)over dot(SFR)(z) evolution. This implies that the (rho)over dot(SFR)(z) evolution is primarily due to the secular evolution of galaxies, rather than interactions or mergers. This is consistent with the morphologies predominantly seen in the SINGG sample.