60 resultados para DORSAL ROOT GANGLIA

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

P2X purinoceptors have been suggested to participate in transduction of painful stimuli in nociceptive neurons. In the current experiments, ATP (1-10 mM), alpha,beta-methylene-ATP (10-30 mu M) and capsaicin (10 nM-1 mu M) were applied to neurons impaled with high resistance microelectrodes in rat dorsal root ganglia (L4 and L5) isolated in vitro together with the sciatic nerve and dorsal roots. The agonists were either bath applied or focally applied using a picospritzer. GABA (100 mu M) and 40-80 mM K+ solutions gave brisk responses when applied by either technique. Only three of 22 neurons with slowly conducting axons (C cells) showed evidence of P2X-purinoceptor-mediated responses. Only two of 13 cells which responded to capsaicin (putative nociceptors), and none of 29 cells with rapidly conducting axons (A cells), responded to the purinergic agonists. When acutely dissociated dorsal root ganglion cells were studied using patch-clamp techniques, all but four of 30 cells of all sizes responded with an inward current to either ATP or alpha,beta-methylene-ATP (both 100 mu M). Our data suggest that few sensory cell bodies in intact dorsal root ganglia express functional purinoceptors. (C) 1998 IBRO. Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurotrophin receptor (p75NTR) is best known for mediating tropic support by participating in the formation of high-affinity nerve growth factor (NGF) receptor complexes with trkA, however, p75NTR more recently has been shown to act as a bona fide death-signaling receptor, which can signal independently of trkA. This article discusses the evidence for an active role of p75NTR in neuronal cell death and the mechanisms controlling this process, including roles for Bcl-2 family members, the c-jun stress kinase JNK, the transcription factor nuclear factor kappa B (NF kappa B), and caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The neurotrophin receptor p75NTR has been shown to mediate neuronal cell death after nerve injury. 2. Down-regulation of p75NTR by antisense oligonucleotides is able to inhibit both sensory and motor neuron death and this treatment is more effective than treatment with growth factors. 3. p75NTR induces cell death by a unique death signalling pathway involving transcription factors (nuclear factor kappa B and c-jun), Bcl-2 family members and caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 75 kD low-affinity neurotrophin receptor (p75(NTR)) is expressed in developing and axotomised spinal motor neurons. There is now convincing evidence that p75NTR can, under some circumstances, become cytotoxic and promote neuronal cell death. We report here that a single application of antisense p75(NTR) oligodeoxynucleotides to the proximal nerve stumps of neonatal rats significantly reduces the loss of axotomised motor neurons compared to controls treated with nonsense oligodeoxynucleotides or phosphate-buffered saline. Our investigations also show that daily systemic intraperitoneal injections of antisense p75(NTR) oligodeoxynucleotides for 14 days significantly reduce the loss of axotomised motor neurons compared to controls. Furthermore, we found that systemic delivery over a similar period continues to be effective following axotomy when intraperitoneal injections were 1) administered after a delay of 24 hr, 2) limited to the first 7 days, or 3) administered every third day. In addition, p75(NTR) protein levels were reduced in spinal motor neurons following treatment with antisense p75(NTR) oligodeoxynucleotides. There were also no obvious side effects associated with antisense p75(NTR) oligodeoxynucleotide treatments as determined by behavioural observations and postnatal weight gain. Our findings indicate that antisense-based strategies could be a novel approach for the prevention of motor neuron degeneration associated with injuries or disease. (C) 2001 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. In vivo studies have shown that the low-affinity 75 kDa neurotrophin receptor (p75NTR) is involved in axotomy-induced cell death of sensory and motor neurons. To further examine the importance of p75NTR in mediating neuronal death in vivo , we examined the effect of axotomy in the p75NTR-knockout mouse, which has a disrupted ligand-binding domain. 2. The extent of sensory and motor neuron loss in the p75NTR-knockout mouse following axotomy was not significantly different to that in wild-type mice. This suggests that disruption of the ligand-binding domain is insufficient to block the cell death process in axotomized neurons. 3. Immunohistochemical studies showed that axotomized neurons continue to express this mutant receptor with its intracellular death-signalling moiety intact. 4. Treatment with antisense oligonucleotides targeted against p75NTR resulted in significant reduction in the loss of axotomized neurons in the knockout mouse. 5. These data suggest that the intracellular domain of p75NTR is essential for death-signalling and that p75NTR can signal apoptosis, despite a disrupted ligand-binding domain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early endosomal antigen I (EEAI) is known to be a marker of early endosomes and in cultured hippocampal neurons it preferentially localizes to the dendritic but not the axonal compartment. We show in cultured dorsal root ganglia and superior cervical ganglia neurons that EEAI localizes to the cell bodies and the neurites of both sensory and sympathetic neurons. We then show in vivo using a ligated rat sciatic nerve that EEAI significantly accumulates on the proximal side and not on the distal side of the ligation. This suggests that EEAI is transported in the anterograde direction in axons either as part of the homeostatic process or to the nerve ligation site in response to nerve injury. NeuroReport 12:281-284 (C) 2001 Lippincott Williams & Wilkins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an attempt to elucidate the role of Slit2 invertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2 protein, which induced significant neurite branching and outgrowth. Using kidney explants as a model system, metanephric development in the presence of hSlit2 protein was examined. Addition of hSlit2 up to a final concentration of 1 mug/ml had no detectable effect on the formation of nephrons or on branching morphogenesis of the ureteric tree after 2 or 4 days in culture, as assessed via immunofluorescence for the markers WT1 and calbindin 28K respectively. Similarly, maturation of the nephrogenic mesenchyme occurred in a phenotypically normal fashion. In situ analysis of the Slit receptors, Robot and Robot, the vasculogenic markers VEGFA and Flk-1, and the stromal cell marker BF2 displayed no difference in comparison to controls.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the derivation of two new lines of transgenic mice that express Cre recombinase under the control of tyrosinase transcriptional elements. To determine the suitability of the Tyrosinase-Cre transgene for tissue-specific gene ablation studies, a fate map of Cre expression domains was determined using the Z/AP reporter strain. It was shown that Cre-expressing cells contribute to a wide array of neural crest and neuroepithelial-derived lineages. The melanocytes of the harderian gland and eye choroid, sympathetic cephalic ganglia, leptomeninges of the telencephalon, as well as cranial nerves (V), (VII), and (IX) are derived either fully or partly from Cre-expressing cephalic crest. The cells contributing to the cranial nerves were the first to exhibit Cre expression at E10.5 as they were migrating into the branchial arches. The melanocytes, chromaffin cells of the adrenal medulla, and dorsal root ganglia are derived from trunk neural crest that either express Cre or were derived from Cre-expressing precursors. An array of brain tissue including the basal forebrain, hippocampus, olfactory bulb, and the granule cell layer of the lateral cerebellum, as well as the retinal pigmented epithelium and glia of the optic nerve originate from Cre-expressing neuroepithelial cells. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.