7 resultados para DOCUMENT MANAGEMENT

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Uses research in a major UK company on the introduction of an electronic document management system to explore perceptions of, and attitudes to, risk. Phenomenological methods were used; with subsequent dialogue transcripts evaluated with Winmax dialogue software, using an adapted theoretical framework based upon an analysis of the literature. The paper identifies a number of factors, and builds a framework, that should support a greater understanding of risk assessment and project management by the academic community and practitioners.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Document classification is a supervised machine learning process, where predefined category labels are assigned to documents based on the hypothesis derived from training set of labelled documents. Documents cannot be directly interpreted by a computer system unless they have been modelled as a collection of computable features. Rogati and Yang [M. Rogati and Y. Yang, Resource selection for domain-specific cross-lingual IR, in SIGIR 2004: Proceedings of the 27th annual international conference on Research and Development in Information Retrieval, ACM Press, Sheffied: United Kingdom, pp. 154-161.] pointed out that the effectiveness of document classification system may vary in different domains. This implies that the quality of document model contributes to the effectiveness of document classification. Conventionally, model evaluation is accomplished by comparing the effectiveness scores of classifiers on model candidates. However, this kind of evaluation methods may encounter either under-fitting or over-fitting problems, because the effectiveness scores are restricted by the learning capacities of classifiers. We propose a model fitness evaluation method to determine whether a model is sufficient to distinguish positive and negative instances while still competent to provide satisfactory effectiveness with a small feature subset. Our experiments demonstrated how the fitness of models are assessed. The results of our work contribute to the researches of feature selection, dimensionality reduction and document classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Document ranking is an important process in information retrieval (IR). It presents retrieved documents in an order of their estimated degrees of relevance to query. Traditional document ranking methods are mostly based on the similarity computations between documents and query. In this paper we argue that the similarity-based document ranking is insufficient in some cases. There are two reasons. Firstly it is about the increased information variety. There are far too many different types documents available now for user to search. The second is about the users variety. In many cases user may want to retrieve documents that are not only similar but also general or broad regarding a certain topic. This is particularly the case in some domains such as bio-medical IR. In this paper we propose a novel approach to re-rank the retrieved documents by incorporating the similarity with their generality. By an ontology-based analysis on the semantic cohesion of text, document generality can be quantified. The retrieved documents are then re-ranked by their combined scores of similarity and the closeness of documents’ generality to the query’s. Our experiments have shown an encouraging performance on a large bio-medical document collection, OHSUMED, containing 348,566 medical journal references and 101 test queries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventionally, document classification researches focus on improving the learning capabilities of classifiers. Nevertheless, according to our observation, the effectiveness of classification is limited by the suitability of document representation. Intuitively, the more features that are used in representation, the more comprehensive that documents are represented. However, if a representation contains too many irrelevant features, the classifier would suffer from not only the curse of high dimensionality, but also overfitting. To address this problem of suitableness of document representations, we present a classifier-independent approach to measure the effectiveness of document representations. Our approach utilises a labelled document corpus to estimate the distribution of documents in the feature space. By looking through documents in this way, we can clearly identify the contributions made by different features toward the document classification. Some experiments have been performed to show how the effectiveness is evaluated. Our approach can be used as a tool to assist feature selection, dimensionality reduction and document classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Domain specific information retrieval has become in demand. Not only domain experts, but also average non-expert users are interested in searching domain specific (e.g., medical and health) information from online resources. However, a typical problem to average users is that the search results are always a mixture of documents with different levels of readability. Non-expert users may want to see documents with higher readability on the top of the list. Consequently the search results need to be re-ranked in a descending order of readability. It is often not practical for domain experts to manually label the readability of documents for large databases. Computational models of readability needs to be investigated. However, traditional readability formulas are designed for general purpose text and insufficient to deal with technical materials for domain specific information retrieval. More advanced algorithms such as textual coherence model are computationally expensive for re-ranking a large number of retrieved documents. In this paper, we propose an effective and computationally tractable concept-based model of text readability. In addition to textual genres of a document, our model also takes into account domain specific knowledge, i.e., how the domain-specific concepts contained in the document affect the document’s readability. Three major readability formulas are proposed and applied to health and medical information retrieval. Experimental results show that our proposed readability formulas lead to remarkable improvements in terms of correlation with users’ readability ratings over four traditional readability measures.