10 resultados para DNA, Ribosomal Spacer
em University of Queensland eSpace - Australia
Resumo:
In just over a decade, the use of molecular approaches for the recognition of parasites has become commonplace. For trematodes, the internal transcribed spacer region of ribosomal DNA (ITS rDNA) has become the default region of choice. Here, we review the findings of 63 studies that report ITS rDNA sequence data for about 155 digenean species from 19 families, and then review the levels of variation that have been reported and how the variation has been interpreted. Overall, complete ITS sequences (or ITS1 or ITS2 regions alone) usually distinguish trematode species clearly, including combinations for which morphology gives ambiguous results. Closely related species may have few base differences and in at least one convincing case the ITS2 sequences of two good species are identical. In some cases, the ITS1 region gives greater resolution than the ITS2 because of the presence of variable repeat units that are generally lacking in the ITS2. Intraspecific variation is usually low and frequently apparently absent. Information on geographical variation of digeneans is limited but at least some of the reported variation probably reflects the presence of multiple species. Despite the accepted dogma that concerted evolution makes the individual representative of the entire species, a significant number of studies have reported at least some intraspecific variation. The significance of such variation is difficult to assess a posteriori, but it seems likely that identification and sequencing errors account for some of it and failure to recognise separate species may also be significant. Some reported variation clearly requires further analysis. The use of a yardstick to determine when separate species should be recognised is flawed. Instead, we argue that consistent genetic differences that are associated with consistent morphological or biological traits should be considered the marker for separate species. We propose a generalised approach to the use of rDNA to distinguish trematode species.
Resumo:
The APTX gene, mutated in patients with the neurological disorder ataxia with oculomotor apraxia type 1 (AOA1), encodes a novel protein aprataxin. We describe here, the interaction and interdependence between aprataxin and several nucleolar proteins, including nucleolin, nucleophosmin and upstream binding factor-1 (UBF-1), involved in ribosomal RNA (rRNA) synthesis and cellular stress signalling. Interaction between aprataxin and nucleolin occurred through their respective N-terminal regions. In AOA1 cells lacking aprataxin, the stability of nucleolin was significantly reduced. On the other hand, down-regulation of nucleolin by RNA interference did not affect aprataxin protein levels but abolished its nucleolar localization suggesting that the interaction with nucleolin is involved in its nucleolar targeting. GFP-aprataxin fusion protein co-localized with nucleolin, nucleophosmin and UBF-1 in nucleoli and inhibition of ribosomal DNA transcription altered the distribution of aprataxin in the nucleolus, suggesting that the nature of the nucleolar localization of aprataxin is also dependent on ongoing rRNA synthesis. In vivo rRNA synthesis analysis showed only a minor decrease in AOA1 cells when compared with controls cells. These results demonstrate a cross-dependence between aprataxin and nucleolin in the nucleolus and while aprataxin does not appear to be directly involved in rRNA synthesis its nucleolar localization is dependent on this synthesis.
Resumo:
Pearsonellum pygmaeus n. sp. is described from Cromileptes altivelis (Serranidae), the Barramundi Cod, from Heron Island (southern Great Barrier Reef) and Lizard Island (northern Great Bat-Her Reef). This new species differs from Pearsonellum eorventum (type and only species) in the combination of smaller overall body size, the relative distance of the brain from the anterior end, the relative lengths of both the oesophagus and the testis, the degree to which the testis extends outside the intercaecal field, the shape of the testis, the shape and size of the ovary and the extent to which the uterzus loops around the ovary. There are in addition, 20 base pair differences between the ITS2 rDNA sequence of P. pygmaeus n. sp. and that of P corventum. Three new host records for P. corventum are reported. Adelomyllos teenae n. g., n. sp. is described from Epinephelus coioides (Serranidae), the Estuary Cod, from Moreton Bay, southeast Queensland. The new genus differs from the 22 other sanguinicolid genera in the combined possession of two testes, a cirrus-sac, separate genital pores, a post-ovarian uterus and an H-shaped intestine. A. teenae n. sp. is the third sanguinicolid described from the Epinephelinae. Sanguinicolids have now been reported from 11 species of Serranidae. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Marteilia sydneyi (Paramyxea) is the causative agent of QX disease in oysters. In spite of the economic impact of this disease, its origin and the precise reason(s) for its apparent spread in Australian waters are not yet known. Given such knowledge gaps, investigating the population genetic structure(s) of M. sydneyi populations could provide insights into the epidemiology and ecology of the parasite and could assist in its prevention and control. In this study, single strand conformation polymorphism (SSCP)-based analysis of a region (195 bp) of the first internal transcribed spacer (ITS-1) of ribosomal DNA was employed to investigate genetic variation within and among five populations of M. sydneyi from oysters from five different locations in eastern Australia. The analysis showed the existence of a genetic variant of M. sydneyi common to the Great Sandy Strait, and the Richmond and Georges Rivers, as distinct from variants at the Pimpama and Clarence Rivers. Together with historical and other information relating to the QX disease outbreaks in eastern Australia, the molecular findings support the proposal that the parasite originated in the Great Sandy Strait and/or Richmond River and then extended southward along the coast. From a technical perspective, the study demonstrated the usefulness of SSCP as a tool to study the population genetics and epidemiology of M. sydneyi. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In recent years there has been much progress in our understanding of the phylogeny and evolution of ticks, in particular the hard ticks (Ixodidae). Indeed, a consensus about the phylogeny of the hard ticks has emerged which is quite different to the working hypothesis of 10 years ago. So that the classification reflects our knowledge of ticks, several changes to the nomenclature of ticks are imminent or have been made. One subfamily, the Hyalomminae, should be sunk, while another, the Bothriocrotoninae, has been created (Klompen, Dobson & Barker, 2002). Bothriocrotoninae, and its sole genus Bothriocroton, have been created to house an early-diverging ('basal') lineage of endemic Australian ticks that used to be in the genus Aponomma. The remaining species of the genus Aponomma have been moved to the genus Amblyomma. Thus, the name Aponomma is no longer a valid genus name. The genus Rhipicephalus is paraphyletic with respect to the genus Boophilus. Thus, the genus Boophilus has become a subgenus of the genus Rhipicephalus (Murrell & Barker, 2003). Knowledge of the phylogenetic relationships of ticks has also provided new insights into the evolution of ornateness and of their life cycles, and has allowed the historical zoogeography of ticks to be studied. Finally, we present a list of the 899 valid genus and species names of ticks as of February 2004.
Resumo:
Approximately 1-2% of the tropical abalone Haliotis asinina inhabiting Heron Island Reef are infected with opecoelid digeneans. These largely inhabit the haemocoel surrounding the cerebral ganglia and digestive gland-gonad complex, and infected abalone typically have significantly reduced or ablated gonads. Observations of infected abalone reveal two distinct cercarial emergence patterns, one which correlates tightly with the abalone's highly regular and synchronous fortnightly spawning cycle, and the other which occurs in a circadian pattern. The former appears to be a novel emergence strategy not previously observed in digeneans. While the cercariae in all abalone are morphologically indistinguishable, comparison of sequences from the internal transcribed spacer 2 (ITS 2) region of the ribosomal DNA reveals a 5.7% difference between cercariae displaying different emergence patterns, indicating these are two distinct species that probably belong to the same genus. The ITS 2 sequences of the species with the daily emergence pattern are identical to that of an undescribed adult opecoelid from the gut of the barramundi cod, Cromileptes altivelis. Combined molecular, morphological and emergence data suggest that while these opecoelid cercariae use the same first intermediate host and are closely related species-members of the genus Allopodocotyle-they fill different ecological niches that are likely to include different definitive hosts.
Resumo:
We describe an unprecedented radiation of sanguinicolid blood flukes ( Digenea: Sanguinicolidae) from two species of Labridae (Choerodon venustus and C. cauteroma), seven species of Mullidae (Mulloidichthys vanicolensis, Parupeneus barberinoides, P. barberinus, P. bifasciatus, P. cyclostomus, P. indicus and P. multifasciatus) and ten species of Siganidae (Siganus argenteus, S. corallinus, S. doliatus, S. fuscescens, S. lineatus, S. margaritiferus, S. puellus, S. punctatus, S. virgatus and S. vulpinus) from sites off Australia and Palau. The flukes were morphologically similar in having the combination of a long thread-like body, tegumental spines in lateral transverse rows, a vestigial oral sucker bearing concentric rows of fine spines, an H-shaped intestine, a cirrussac, a notch level with the male genital pore, a lateral or post-ovarian uterus, a uterine chamber and separate genital pores. These species are divided into two genera on the basis of testis number. Sanguinicolids from Siganus fuscescens have a single large testis between the intestinal bifurcation and the ovary and are placed in Ankistromeces Nolan & Cribb, 2004. Species from the remaining nine species of Siganidae, Labridae and Mullidae are placed in Phthinomita n. g.; these species have two testes, the anterior testis being large and between the intestinal bifurcation and the ovary whereas the small posterior testis is at the posterior end of the body and appears rudimentary or degenerate and probably non-functional. The second internal transcribed spacer (ITS2) of ribosomal DNA ( rDNA) from 29 host/parasite/location combinations (h/p/l) was sequenced together with that of Ankistromeces mariae Nolan & Cribb, 2004 for comparison. From 135 samples we found 19 distinct genotypes which were interpreted as representing at least that many species. Replicate sequences were obtained for 25 of 30 h/p/l combinations ( including A. mariae); there was no intraspecific variation between replicates sequences for any of these. Interspecific variation ranged from 1 - 41 base differences (0.3 - 12.7% sequence divergence). The 19 putative species were difficult to recognise by morphological examination. We describe 13 new species; we do not describe (= name) six species characterised solely by molecular sequences and three putative species for which morphological data is available but for which molecular data is not. We have neither morphological nor molecular data for sanguinicolids harboured in five hosts species ( Siganus margaritiferus, S. puellus, Choerodon cauteroma, Parupeneus indicus and P. multifasciatus) in which we have seen infections. Where host species were infected in different localities they almost always harboured distinct species. Some host species ( for example, S. argenteus and S. lineatus from Lizard Island) harboured two or three species in a single geographical location. This suggests that, for parts of this system, parasite speciation has outstripped host speciation. Distance analysis of ITS2 showed species from each host family ( Siganidae, Mullidae and Labridae) did not form monophyletic clades to the exclusion of species from other host families. However, a host defined clade was formed by the sequences from sanguinicolids from S. fuscescens.
Resumo:
A survey of Pacific coral reef fishes for sanguinicolids revealed that two species of Lutjanidae (Lutjanus argentimaculatus, L. bohar), six species of Siganidae (Siganus corallinus, S. fuscescens, S. lineatus, S. margaritiferus, S. punctatus, S. vulpinus), seven species of Chaetodontidae (Chaetodon aureofasciatus, C. citrinellus, C. flavirostris, C. lineolatus, C. reticulatus, C. ulietensis, C. unimaculatus), three species of Scombridae (Euthynnus affinis, Scomberomorus commerson, S. munroi) and three species of Scaridae (Chlorurus microrhinos, Scarus frenatus, S. ghobban) were infected with morphologically similar sanguinicolids. These flukes have a flat elliptical body, a vestigial oral sucker, a single testis, separate genital pores and a post-ovarian uterus. However, these species clearly belong in two genera based on the position of the testis and genital pores. Sanguinicolids from Lutjanidae, Siganidae, Chaetodontidae and Scombridae belong in Cardicola Short, 1953; the testis originates anteriorly to, or at the anterior end of, the intercaecal field and does not extend posteriorly to it, the male genital pore opens laterally to the sinistral lateral nerve chord and the female pore opens near the level of the ootype ( may be anterior, lateral or posterior to it) antero-dextral to the male pore. Those from Scaridae are placed in a new genus, Braya; the testis originates near the posterior end of the intercaecal field and extends posteriorly to it, the male pore opens medially at the posterior end of the body and the female pore opens posterior to the ootype, antero-sinistral to the male pore. The second internal transcribed spacer (ITS2) of ribosomal DNA from these sanguinicolids and a known species, Cardicola forsteri Cribb, Daintith & Munday, 2000, were sequenced, aligned and analysed to test the distinctness of the putative new species. Results from morphological comparisons and molecular analyses suggest the presence of 18 putative species; 11 are described on the basis of combined morphological and molecular data and seven are not because they are characterised solely by molecular sequences or to few morphological specimens (n= one). There was usually a correlation between levels of morphological and genetic distinction in that pairs of species with the greatest genetic separation were also the least morphologically similar. The exception in this regard was the combination of Cardicola tantabiddii n. sp. from S. fuscescens from Ningaloo Reef ( Western Australia) and Cardicola sp. 2 from the same host from Heron Island ( Great Barrier Reef). These two parasite/ host/location combinations had identical ITS2 sequences but appeared to differ morphologically ( however, this could simply be due to a lack of morphological material for Cardicola sp. 2). Only one putative species ( Cardicola sp. 1) was found in more than one location; most host species harboured distinct species in each geographical location surveyed ( for example, S. corallinus from Heron and Lizard Islands) and some ( for example, S. punctatus, S. fuscescens and Chlorurus microrhinos) harboured two species at a single location. Distance analysis of ITS2 showed that nine species from siganids, three from scombrids and five from scarids formed monophyletic clades to the exclusion of sanguinicolids from the other host families. Cardicola milleri n. sp. and C. chaetodontis Yamaguti, 1970 from lutjanids and chaetodontids, respectively, were the only representatives from those families that were sequenced. Within the clade formed by sanguinicolids from Siganidae there wasa further division of species; species from the morphologically similar S. fuscescens and S. margaritiferus formed a monophyletic group to the exclusion of sanguinicolids from all other siganid species.
Resumo:
An international collection of the sugarcane ratoon stunting disease pathogen, Leifsonia xyli subsp. xyli, was analysed to assess genetic diversity. DNA fingerprinting using BOX primers was performed on 105 isolates, comprising 65 Australian isolates and an additional 40 isolates from Indonesia (n = 8), Japan (n = 1), USA (n = 3), Brazil (n = 2), Mali (n = 2), Zimbabwe (n = 13), South Africa (n = 9) and Reunion (n = 2). Sixty-two of these isolates were also screened using ERIC primers. No variation was found among any of the isolates. The intergenic spacer (IGS) region of the ribosomal RNA genes from 54 isolates was screened for sequence variation using single-stranded conformational polymorphism (SSCP), but none was observed. Direct sequencing of the IGS from a subset of nine isolates, representing all of the countries sampled in this study, confirmed the results of the SSCP analysis. Likewise, no sequence variation was found in the 16S ribosomal RNA genes of the same subset. Four Colombian isolates from sugarcane, morphologically similar to L. xyli subsp. xyli, were putatively shown to be an undescribed Agrococcus species of unknown pathogenicity. The lack of genetic variation among L. xyli subsp. xyli isolates, independent of time of sampling, cultivar of isolation, or country of origin, suggests the worldwide spread of a single pathogenic clone, and further suggests that sugarcane cultivars resistant to ratoon stunting disease in one area should retain this property in other regions.
Resumo:
Allozyme and molecular sequence data from the malaria vector Anopheles flavirostris (Ludlow) (Diptera: Culicidae) were analysed from 34 sites throughout the Philippines, including the type locality, to test the hypothesis that this taxon is a single panmictic species. A finer-scaled allozyme study, of mainly Luzon samples, revealed no fixed genetic differences in sympatric sites and only low levels of variation. We obtained data from partial sequences for the internal transcribed spacer 2 (ITS2) (483 bp), the third domain (D3) (330 bp) of the 28S ribosomal DNA subunit and cytochrome c oxidase subunit I (COI) of mitochondrial DNA (261 bp). No sequence variation was observed for ITS2, only a one base pair difference was observed between Philippine and Indonesian D3 sequences and An. flavirostris sequences were unique, confirming their diagnostic value for this taxon. Sixteen COI haplotypes were identified, giving 25 parsimony informative sites. Neighbour-Joining, Maximum Parsimony, Maximum Likelihood and Bayesian phylogenetic analysis of COI sequences for An. flavirostris and outgroup taxa revealed strong branch support for the monophyly of An. flavirostris, thus confirming that Philippine populations of this taxon comprise a single separate species within the Minimus Subgroup of the Funestus Group. Variation in the behaviour of An. flavirostris is likely to be intraspecific rather than interspecific in origin. © 2006 The Royal Entomological Society.