18 resultados para DIFFERENT POWER DENSITIES
em University of Queensland eSpace - Australia
Resumo:
Enhancement of interdiffusion in GaAs/AlGaAs quantum wells due to anodic oxides was studied. Photoluminescence, transmission electron microscopy, and quantum well modeling were used to understand the effects of intermixing on the quantum well shape. Residual water in the oxide was found to increase the intermixing, though it was not the prime cause for intermixing. Injection of defects such as group III vacancies or interstitials was considered to be a driving force for the intermixing. Different current densities used in the experimental range to create anodic oxides had little effect on the intermixing. ©1998 American Institute of Physics.
Resumo:
The effect of a gas flow field on the size of raceway has been studied experimentally using a two-dimensional (2-D) cold model. It is observed that as the blast velocity from the tuyere increases, raceway size increases, and when the blast velocity is decreased from its highest value, raceway size does not change much until the velocity reaches a critical velocity. Below the critical velocity, raceway size decreases with decreasing velocity but is always larger than that for the same velocity when the velocity increased. This phenomenon is called raceway hysteresis. Raceway hysteresis has been studied in the presence of different gas flow rates and different particle densities. Raceway hysteresis has been observed in all the experiments. The effect of liquid flow, with various superficial velocities, on raceway hysteresis has also been studied. A study of raceway size hysteresis shows that interparticle and particle-wall friction have a very large effect on raceway size. A hypothesis has been proposed to describe the hysteresis phenomenon in the packed beds. The relevance of hysteresis to blast furnace raceways has been discussed. Existing literature correlations for raceway size ignore the frictional effects. Therefore, their applicability to the ironmaking blast furnace is questionable.
Resumo:
Three different aspects of the morphological organisation of deep-sea fish retinae are reviewed: First, questions of general cell biological relevance are addressed with respect to the development and proliferation patterns of photoreceptors, and problems associated with the growth of multibank retinae, and with outer segment renewal are discussed in situations where there is no direct contact between the retinal pigment epithelium and the tips of rod outer segments. The second part deals with the neural portion of the deep-sea fish retina. Cell densities are greatly reduced, yet neurohistochemistry demonstrates that all major neurotransmitters and neuropeptides found in other vertebrate retinae are also present in deep-sea fish. Quantitatively, convergence rates in unspecialised parts of the retina are similar to those in nocturnal mammals. The differentiation of horizontal cells makes it unlikely that species with more than a single visual pigment are capable of colour vision. In the third part. the diversity of deep-sea fish retinae is highlighted. Based on the topography of ganglion cells, species are identified with areae or foveae located in various parts of the retina, giving them a greatly improved spatial resolving power in specific parts of their visual fields. The highest degree of specialisation is found in tubular eyes. This is demonstrated in a case study of the scopelarchid retina, where as many as seven regions with different degrees of differentiation can be distinguished, ranging from an area giganto cellularis, regions with grouped rods to retinal diverticulum. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper investigates the effective diagnostic technique(s) for assessing the condition of insulation in aged power transformers. A number of electrical, mechanical and chemical techniques were investigated. Many of these techniques are already used by the utility engineers and two comparatively new techniques are proposed in this paper. Results showing the effectiveness of these diagnostics are presented and correlation between the techniques are also presented. Finally, merits and suitability of different techniques are discussed in this paper.
Resumo:
A mathematical model is presented that describes a system where two consumer species compete exploitatively for a single renewable resource. The resource is distributed in a patchy but homogeneous environment; that is, all patches are intrinsically identical. The two consumer species are referred to as diggers and grazers, where diggers deplete the resource within a patch to lower densities than grazers. We show that the two distinct feeding strategies can produce a heterogeneous resource distribution that enables their coexistence. Coexistence requires that grazers must either move faster than diggers between patches or convert the resources to population growth much more efficiently than diggers. The model shows that the functional form of resource renewal within a patch is also important for coexistence. These results contrast with theory that considers exploitation competition for a single resource when the resource is assumed to be well mixed throughout the system.
Resumo:
The standard critical power test protocol on the cycle prescribes a series of trials to exhaustion, each at a different but constant power setting. Recently the protocol has been modified and applied to a series of trials to exhaustion each at a different ramp incremental rate. This study was undertaken to compare critical power and anaerobic work capacity estimates in the same group of subjects when derived from the two protocols. Ten male subjects of mixed athletic ability cycled to exhaustion on eight occasions in randomized order over a 3-wk period. Four trials were performed at differing constant power settings and four trials on differing ramp incremental rates. Both critical power and anaerobic work capacity were estimated for each subject by curve fitting of the ramp model and of three versions of the constant power model. After adjusting for inter-subject variability, no significant differences were detected between critical power estimates or between anaerobic work capacity estimates from any model formulation or from the two protocols. It is concluded that both the ramp and constant power protocols produce equivalent estimates for critical power and anaerobic work capacity.
Resumo:
Objective-To compare the accuracy and feasibility of harmonic power Doppler and digitally subtracted colour coded grey scale imaging for the assessment of perfusion defect severity by single photon emission computed tomography (SPECT) in an unselected group of patients. Design-Cohort study. Setting-Regional cardiothoracic unit. Patients-49 patients (mean (SD) age 61 (11) years; 27 women, 22 men) with known or suspected coronary artery disease were studied with simultaneous myocardial contrast echo (MCE) and SPECT after standard dipyridamole stress. Main outcome measures-Regional myocardial perfusion by SPECT, performed with Tc-99m tetrafosmin, scored qualitatively and also quantitated as per cent maximum activity. Results-Normal perfusion was identified by SPECT in 225 of 270 segments (83%). Contrast echo images were interpretable in 92% of patients. The proportion of normal MCE by grey scale, subtracted, and power Doppler techniques were respectively 76%, 74%, and 88% (p < 0.05) at > 80% of maximum counts, compared with 65%, 69%, and 61% at < 60% of maximum counts. For each technique, specificity was lowest in the lateral wail, although power Doppler was the least affected. Grey scale and subtraction techniques were least accurate in the septal wall, but power Doppler showed particular problems in the apex. On a per patient analysis, the sensitivity was 67%, 75%, and 83% for detection of coronary artery disease using grey scale, colour coded, and power Doppler, respectively, with a significant difference between power Doppler and grey scale only (p < 0.05). Specificity was also the highest for power Doppler, at 55%, but not significantly different from subtracted colour coded images. Conclusions-Myocardial contrast echo using harmonic power Doppler has greater accuracy than with grey scale imaging and digital subtraction. However, power Doppler appears to be less sensitive for mild perfusion defects.
Resumo:
The prediction of tillering is poor or absent in existing sorghum crop models even though fertile tillers contribute significantly to grain yield. The objective of this study was to identify general quantitative relationships underpinning tiller dynamics of sorghum for a broad range of assimilate availabilities. Emergence, phenology, leaf area development and fertility of individual main calms and tillers were quantified weekly in plants grown at one of four plant densities ranging from two to 16 plants m(-2). On any given day, a tiller was considered potentially fertile (a posteriori) if its number of leaves continued to increase thereafter. The dynamics of potentially fertile tiller number per plant varied greatly with plant density, but could generally be described by three determinants, stable across plant densities: tiller emergence rate aligned with leaf ligule appearance rate; cessation of tiller emergence occurred at a stable leaf area index; and rate of decrease in potentially fertile tillers was linearly related to the ratio of realized to potential leaf area growth. Realized leaf area growth is the measured increase in leaf area, whereas potential leaf area growth is the estimated increase in leaf area if all potentially fertile tillers were to continue to develop. Procedures to predict this ratio, by estimating realized leaf area per plant from intercepted radiation and potential leaf area per plant from the number and type of developing axes, are presented. While it is suitable for modelling tiller dynamics in grain sorghum, this general framework needs to be validated by testing it in different environments and for other cultivars. (C) 2002 Annals of Botany Company.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Purpose: Although manufacturers of bicycle power monitoring devices SRM and Power Tap (PT) claim accuracy to within 2.5%, there are limited scientific data available in support. The purpose of this investigation was to assess the accuracy of SRM and PT under different conditions. Methods: First, 19 SRM were calibrated, raced for 11 months, and retested using a dynamic CALRIG (50-1000 W at 100 rpm). Second, using the same procedure, five PT were repeat tested on alternate days. Third, the most accurate SRM and PT were tested for the influence of cadence (60, 80, 100, 120 rpm), temperature (8 and 21degreesC) and time (1 h at similar to300 W) on accuracy. Finally, the same SRM and PT were downloaded and compared after random cadence and gear surges using the CALRIG and on a training ride. Results: The mean error scores for SRM and PT factory calibration over a range of 50-1000 W were 2.3 +/- 4.9% and -2.5 +/- 0.5%, respectively. A second set of trials provided stable results for 15 calibrated SRM after 11 months (-0.8 +/- 1.7%), and follow-up testing of all PT units confirmed these findings (-2.7 +/- 0.1%). Accuracy for SRM and PT was not largely influenced by time and cadence; however. power output readings were noticeably influenced by temperature (5.2% for SRM and 8.4% for PT). During field trials, SRM average and max power were 4.8% and 7.3% lower, respectively, compared with PT. Conclusions: When operated according to manufacturers instructions, both SRM and PT offer the coach, athlete, and sport scientist the ability to accurately monitor power output in the lab and the field. Calibration procedures matching performance tests (duration, power, cadence, and temperature) are, however, advised as the error associated with each unit may vary.
Resumo:
Variations in the growth and survival of six families of juvenile (initial mean weight = 4.16 g) Penaeus japonicus were examined at two densities (48 and 144 individuals m(-2)) in a controlled laboratory experiment. Survival was very high throughout the experiment (95.4%), but differed significantly between densities and rearing tanks. Family, sex and family x density interaction did not significantly affect survival. Mean specific growth rate (SGR) of the shrimp was 18% faster at the low density (1.93 +/- 0.05% day(-1)) than at high density (1.64 +/- 0.03% day(-1)). However, there was a small but significant interaction between family and density indicating that growth of the families was not consistent at both densities. The inconsistent growth of the families across the two densities resulted in a change in the relative performance (ranking) of families at each density. Sex, rearing tank and rearing cage also affected growth of the shrimp. Mean SGR of the females (1.79 +/- 0.03% day(-1)) was 5% faster than males (1.70 +/- 0.03% day(-1)) when averaged across both densities. Shrimp grew significantly faster in rearing tank 3 than rearing tank 1 or 2 at both densities. Results of the present study suggest that family x density interaction could affect the efficiency of selection for growth if shrimp stocks produced from shrimp breeding programs are to be grown across a wide range of densities. Crown Copyright (C) 2004 Published by Elsevier B.V. All rights reserved.
Resumo:
Modelling and optimization of the power draw of large SAG/AG mills is important due to the large power draw which modern mills require (5-10 MW). The cost of grinding is the single biggest cost within the entire process of mineral extraction. Traditionally, modelling of the mill power draw has been done using empirical models. Although these models are reliable, they cannot model mills and operating conditions which are not within the model database boundaries. Also, due to its static nature, the impact of the changing conditions within the mill on the power draw cannot be determined using such models. Despite advances in computing power, discrete element method (DEM) modelling of large mills with many thousands of particles could be a time consuming task. The speed of computation is determined principally by two parameters: number of particles involved and material properties. The computational time step is determined by the size of the smallest particle present in the model and material properties (stiffness). In the case of small particles, the computational time step will be short, whilst in the case of large particles; the computation time step will be larger. Hence, from the point of view of time required for modelling (which usually corresponds to time required for 3-4 mill revolutions), it will be advantageous that the smallest particles in the model are not unnecessarily too small. The objective of this work is to compare the net power draw of the mill whose charge is characterised by different size distributions, while preserving the constant mass of the charge and mill speed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The distributions of eyes-closed resting electroencephalography (EEG) power spectra and their residuals were described and compared using classically averaged and adaptively aligned averaged spectra. Four minutes of eyes-closed resting EEG was available from 69 participants. Spectra were calculated with 0.5-Hz resolution and were analyzed at this level. It was shown that power in the individual 0.5 Hz frequency bins can be considered normally distributed when as few as three or four 2-second epochs of EEG are used in the average. A similar result holds for the residuals. Power at the peak Alpha frequency has quite different statistical behaviour to power at other frequencies and it is considered that power at peak Alpha represents a relatively individuated process that is best measured through aligned averaging. Previous analyses of contrasts in upper and lower alpha bands may be explained in terms of the variability or distribution of the peak Alpha frequency itself.
Resumo:
The basis of this work was to investigate the relative environmental impacts of various power generators knowing that all plants are located in totally different environments and that different receptors will experience different impacts. Based on IChemE sustainability metrics paradigm, we calculated potential environmental indicators (P-EI) that represent the environmental burden of masses of potential pollutants discharged into different receiving media. However, a P-EI may not be of significance, as it may not be expressed at all in different conditions, so to try and include some receiver significance we developed a methodology to take into account some specific environmental indicators (S-EI) that refer to the environmental attributes of a specific site. In this context, we acquired site specific environmental data related to the airsheds and water catchment areas in different locations for a limited number of environmental indicators such as human health (carcinogenic) effects, atmospheric acidification, photochemical (ozone) smog and eutrophication. The S-EI results from this particular analysis show that atmospheric acidification has highest impact value while health risks due to fly ash emissions are considered not to be as significant. This is due to the fact that many coal power plants in Australia are located in low population density air sheds. The contribution of coal power plants to photochemical (ozone) smog and eutrophication were not significant. In this study, we have considered emission related data trends to reflect technology performance (e.g., P-EI indicators) while a real sustainability metric can be associated only with the specific environmental conditions of the relevant sites (e.g., S-EI indicators).
Resumo:
The Australian lungfish Neoceratodus forsteri (Dipnoi) is an ancient fish that has a unique phylogenetic relationship among the basal Sarcopterygii. Here we examine the ultrastructure, histochemistry, and distribution of the retinal photoreceptors using a combination of light and electron microscopy in order to determine the characteristics of the photoreceptor layer in this living fossil. Similar proportions of rods (53%) and cones (47%) reveal that N. forsteri optimizes both scotopic and photopic sensitivity according to its visual demands. Scotopic sensitivity is optimized by a tapetum lucidum and extremely large rods (18.62 +/- 2.68 mu m ellipsoid diameter). Photopic sensitivity is optimized with a theoretical spatial resolving power of 3.28 +/- 0.66 cycles degree(-1), which is based on the spacing of at least three different cone types: a red cone containing a red oil droplet, a yellow cone containing a yellow ellipsoidal pigment, and a colorless cone containing multiple clear oil droplets. Topographic analysis reveals a heterogeneous distribution of all photoreceptor types, with peak cone densities predominantly found in temporal retina (6,020 rods MM 2, 4,670 red cones mm(-2), 900 yellow cones mm(-2), and 320 colorless cones mm(-2)), but ontogenetic changes in distribution are revealed. Spatial resolving power and the diameter of all photoreceptor types (except yellow cones) increases linearly with growth. The presence of at least three morphological types of cones provides the potential for color vision, which could play a role in the clearer waters of its freshwater environment.