18 resultados para DEACETYLASE
em University of Queensland eSpace - Australia
Resumo:
Histone deacetylase inhibitors show promise as chemotherapeutic agents and have been demonstrated to block proliferation in a wide range of tumor cell lines. Much of this antiproliferative effect has been ascribed to the up-regulated expression of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1). In this article, we report that p21 expression was up-regulated by relatively low doses of the histone deacetylase inhibitor azelaic bishydroxamic acid (ABHA) and correlated with a proliferative arrest. Higher doses of ABHA were cytotoxic. Cells that did not up-regulate p21 expression were hypersensitive to killing by ABHA and died via apoptosis, whereas up-regulation of p21 correlated with reduced sensitivity and a block in the apoptotic mechanism, and these cells seemed to die by necrosis. Using isogenic p21(+/+) and p21(-/-) cell lines and direct inhibition of caspase activity, we demonstrate that the reduced sensitivity to killing by ABHA is a consequence of inhibition of apoptosis by up-regulated p21 expression. These data indicate the enormous potential of therapeutic strategies that bypass the cytoprotective effect of p21 and act on the same molecular targets as the histone deacetylase inhibitors.
Resumo:
Use of specific histone deacetylase inhibitors has revealed critical roles for the histone deacetylases (HDAC) in controlling proliferation. Although many studies have correlated the function of HDAC inhibitors with the hyperacetylation of histones, few studies have specifically addressed whether the accumulation of acetylated histones, caused by HDAC inhibitor treatment, is responsible for growth inhibition. In the present study we show that HDAC inhibitors cause growth inhibition in normal and transformed keratinocytes but not in normal dermal fibroblasts, This was despite the observation that the HDAC inhibitor, suberic bishydroxamate (SBHA), caused a kinetically similar accumulation of hyperacetylated histones, This cell type-specific response to SBHA was not due to the inactivation of SBHA by fibroblasts, nor was it due to differences in the expression of specific HDAC family members. Remarkably, overexpression of HDACs 1, 4, and 6 in normal human fibroblasts resulted in cells that could be growth-inhibited by SBHA. These data suggest that, although histone acetylation is a major target for HDAC inhibitors, the accumulation of hyperacetylated histones is not sufficient to cause growth inhibition in all cell types, This suggests that growth inhibition, caused by HDAC inhibitors, may be the culmination of histone hyperacetylation acting in concert with other growth regulatory pathways.
Resumo:
Background. Posttransplant lymphoproliferative disease (PTLD), driven by the presence of Epstein-Barr virus (EBV), is becoming an increasingly important clinical problem after solid organ transplantation. The use of immunosuppressive therapy leads to the inhibition of the cytotoxic T cells that normally control the EBV latently infected B cells. The prognosis for many patients with PTLD is poor, and the optimal treatment strategy is not well defined. Method. This study investigates the use of a histone deacetylase inhibitor, azelaic bishydroxamic acid (ABRA), for its ability to effectively kill EBV-transformed lymphoblastoid cell lines. Results. In vitro treatment of lymphoblastoid cell lines with ABRA showed that they were effectively killed by low doses of the drug (ID50 2-5 mug/ml) within 48 hr. As well as being effective against polyclonal B-cell lines, ABHA was also shown to be toxic to seven of eight clonal Burkitt's lymphoma cell lines, indicating that the drug may also be useful in the treatment of late-occurring clonal PTLD. In addition, ABHA treatment did not induce EBV replication or affect EBV latent gene expression. Conclusion. These studies suggest that ABHA effectively kills both polyclonal and clonal B-cell lines and has potential in the treatment of PTLD.
Resumo:
Heparan sulphate is an important mediator in determining vascular smooth muscle cell (SMC) phenotype. The sulphation pattern of the heparan sulphate chains is critical to their function. We have examined the initial step in the biosynthesis of the sulphated domains mediated by the enzyme heparan sulphate N-deacetylase/N-sulphotransferase (NDST). Rabbit aortic SMC in primary culture exhibited NDST enzyme activity and expressed NDST-1 in their Golgi apparatus, with maximal expression in SMC 2 days after dispersal in primary culture confirmed by Western blot analysis. Endothelial cells, macrophages and fibroblasts expressed NDST-1 but had generally less intense staining than SMC, although SMC expression decreased with culture. The uninjured rat aorta also showed widespread expression of NDST-1. After balloon de-endothelialisation, NDST-1 could not be detected in SMC of the neointima in the early stages of neointimal formation, but was re-expressed at later time points (after 12 weeks). In human coronary arteries, SMC of the media and the diffuse intimal thickening expressed NDST-1, while SMC in the atherosclerotic plaque were negative for NDST-1. We conclude that SMC may regulate their heparan sulphate sulphation at the level of expression of the enzyme heparan sulphate NDST in a manner related to their phenotypic state.
Resumo:
Histone deacetylase inhibitors (HDACi) are a promising new class of chemotherapeutic drug currently in early phase clinical trials. A large number of structurally diverse HDACi have been purified or synthesised that mostly inhibit the activity of all eleven class I and II HDACs. While these agents demonstrate many features required for anti-cancer activity such as low toxicity against normal cells and an ability to inhibit tumor cell growth and survival at nanomolar concentrations, their mechanisms of action are largely unknown. Initially, a model was proposed whereby HDACi-mediated transactivation of a specific gene or set of genes was responsible for the inhibition of cell cycle progression or induction of apoptosis. Given that HDACs can regulate the activity of a number of nonhistone proteins and that histone acetylation is important for events such as DNA replication and mitosis that do not directly involve gene transcription, it appears that the initial mechanistic model for HDACi may have been too simple. Herein, we provide an update on the transcription-dependent and - independent events that may be important for the anti-tumor activities of HDACi and discuss the use of these compounds in combination with other chemotherapeutic drugs.
Resumo:
The use of many conventional chemotherapeutic drugs is often severely restricted due to dose-limiting toxicities, as these drugs target the destruction of the proliferating fraction of cells, often with little specificity for tumor cells over proliferating normal body tissue. Many newer drugs attempt to overcome this shortcoming by targeting defective gene products or cellular mechanisms that are specific to the tumor, thereby minimizing the toxicity to normal tissue. Histone deacetylase inhibitors are an example of this type of tumor-directed drug, having significant toxicity for tumors but minimal effects on normal tissue. These drugs can affect the transcriptional program by modifying chromatin structure, but it is not yet clear whether specific transcriptional changes are directly responsible for their tumor-selective toxicity. Recent evidence suggests that transcriptional changes underlie their cytostatic activity, although this is not tumor-selective and affects all proliferating cells. Here we present evidence that supports an alternative mechanism for the tumor-selective cytotoxicity of histone deacetylase inhibitors. The target is still likely to be the chromatin histones, but rather than transcriptional changes due to modification of the transcriptionally active euchromatin, we propose that hyperacetylation and disruption of the transcriptionally inactive heterochromatin, particularly the centromeric heterochromatin, and the inability of tumor cells to cell cycle arrest in response to a specific checkpoint, underlies the tumor-selective cytotoxicity of these drugs.
Resumo:
Conventional chemotherapeutic drugs target proliferating cells, relying on often small differences in drug sensitivity of tumour cells compared to normal tissue to deliver a therapeutic benefit. Consequently, they have significant limiting toxicities and greatly reduced efficacy against nonproliferating compared to rapidly proliferating tumour cells. This lack of selectivity and inability to kill nonproliferating cells that exist in tumours with a low mitotic index are major failings of these drugs. A relatively new class of anticancer drugs, the histone deacetylase inhibitors (HDI), are selectively cytotoxic, killing tumour and immortalized cells but normal tissue appears resistant. Treatment of tumour cells with these drugs causes both G1 phase cell cycle arrest correlated with increase p21 expression, and cell death, but even the G1 arrested cells died although the onset of death was delayed. We have extended these observations using cells that were stably arrested by either serum starvation or expression of the cyclin-dependent kinase inhibitor p16(ink4a). We report that histone deacetylase inhibitors have similar cytotoxicity towards both proliferating and arrested tumour and immortalized cells, although the onset of apoptosis is delayed by 24 h in the arrested cells. Both proliferating and arrested normal cells are unaffected by HDI treatment. Thus, the histone deacetylase inhibitors are a class of anticancer drugs that have the desirable features of being tumour-selective cytotoxic drugs that are equally effective in killing proliferating and nonproliferating tumour cells and immortalized cells. These drugs have enormous potential for the treatment of not only rapidly proliferating tumours, but tumours with a low mitotic index.
Resumo:
Bacterial LPS triggers dramatic changes in gene expression in macrophages. We show here that LPS regulated several members of the histone deacetylase (HDAC) family at the mRNA level in murine bone marrow-derived macrophages (BMM). LPS transiently repressed, then induced a number of HDACs (Hdac-4, 5, 7) in BMM, whereas Hdac-1 mRNA was induced more rapidly. Treatment of BMM with trichostatin A (TSA), an inhibitor of HDACs, enhanced LPS-induced expression of the Cox-2, Cxcl2, and Ifit2 genes. In the case of Cox-2, this effect was also apparent at the promoter level. Overexpression of Hdac-8 in RAW264 murine macrophages blocked the ability of LPS to induce Cox-2 mRNA. Another class of LPS-inducible genes, which included Ccl2, Ccl7, and Edn1, was suppressed by TSA, an effect most likely mediated by PU.1 degradation. Hence, HDACs act as potent and selective negative regulators of proinflammatory gene expression and act to prevent excessive inflammatory responses in macrophages.
Resumo:
We describe a functional and biochemical link between the myogenic activator MyoD, the deacetylase HDAC1, and the tumor suppressor pRb. Interaction of MyoD with HDAC1 in undifferentiated myoblasts mediates repression of muscle-specific gene expression. Prodifferentiation cues, mimicked by serum removal, induce both downregulation of HDAC1 protein and pRb hypophosphorylation. Dephosphorylation of pRb promotes the formation of pRb-HDAC1 complex in differentiated myotubes. pRb-HDAC1 association coincides with disassembling of MyoD-HDAC1 complex, transcriptional activation of muscle-restricted genes, and cellular differentiation of skeletal myoblasts. A single point mutation introduced in the HDAC1 binding domain of pRb compromises its ability to disrupt MyoD-HDAC1 interaction and to promote muscle gene expression. These results suggest that reduced expression of HDAC1 accompanied by its redistribution in alternative nuclear protein complexes is critical for terminal differentiation of skeletal muscle cells.
Resumo:
The overlapping expression profile of MEF2 and the class-II histone deacetylase, HDAC7, led us to investigate the functional interaction and relationship between these regulatory proteins. HDAC7 expression inhibits the activity of MEF2 (-A, -C, and -D), and in contrast MyoD and Myogenin activities are not affected. Glutathione S-transferase pulldown and immunoprecipitation demonstrate that the repression mechanism involves direct interactions between MEF2 proteins and HDAC7 and is associated with the ability of MEF2 to interact with the N-terminal 121 amino acids of HDAC7 that encode repression domain 1. The MADS domain of MEF2 mediates the direct interaction of MEF2 with HDAC7, MEF2 inhibition by HDAC7 is dependent on the N-terminal repression domain and surprisingly does not involve the C-terminal deacetylase domain. HDAC7 interacts with CtBP and other class-I and -II HDACs suggesting that silencing of MEF2 activity involves corepressor recruitment. Furthermore, we show that induction of muscle differentiation by serum withdrawal leads to the translocation of HDAC7 from the nucleus into the cytoplasm. This work demonstrates that HDAC7 regulates the function of MEF2 proteins and suggests that this class-II HDAC regulates this important transcriptional (and pathophysiological) target in heart and muscle tissue. The nucleocytoplasmic trafficking of HDAC7 and other class-II HDACs during myogenesis provides an ideal mechanism for the regulation of HDAC targets during mammalian development and differentiation.
Resumo:
Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides; we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the middle of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.
Resumo:
Selective destruction of malignant tumor cells without damaging normal cells is an important goal for cancer chemotherapy in the 21st century. Differentiating agents that transform cancer cells to either a nonproliferating or normal phenotype could potentially be tissue-specific and avoid side effects of current drugs. However, most compounds that are presently known to differentiate cancer cells are histone deacetylase inhibitors that are of low potency or suffer from low bioavailability, rapid metabolism, reversible differentiation, and nonselectivity for cancer cells over normal cells. Here we describe 36 nonpeptidic compounds derived from a simple cysteine scaffold, fused at the C-terminus to benzylamine, at the N-terminus to a small library of carboxylic acids, and at the S-terminus to 4-butanoyl hydroxamate. Six compounds were cytotoxic at nanomolar concentrations against a particularly aggressive human melanoma cell line (MM96L), four compounds showed selectivities of greater than or equal to5:1 for human melanoma over normal human cells (NFF), and four of the most potent compounds were further tested and found to be cytotoxic for six other human cancer cell lines (melanomas SK-MEL-28, DO4; prostate DU145; breast MCF-7; ovarian JAM, CI80-13S). The most active compounds typically caused hyperacetylation of histones, induced p21 expression, and reverted phenotype of surviving tumor cells to a normal morphology. Only one compound was given orally at 5 mg/kg to healthy rats to look for bioavailaiblity, and it showed reasonably high levels in plasma (C-max 6 mug/mL, T-max 15 min) for at least 4 h. Results are sufficiently promising to support further work on refining this and related classes of compounds to an orally active, more tumor-selective, antitumor drug.
Resumo:
Signals generated in response to extracellular stimuli at the plasma membrane are transmitted through cytoplasmic transduction cascades to the nucleus. We report the identification of a pathway directly linking the small GTPase Rab5, a key regulator of endocytosis, to signal transduction and mitogenesis. This pathway operates via APPL1 and APPL2, two Rab5 effectors, which reside on a subpopulation of endosomes. In response to extracellular stimuli such as EGF and oxidative stress, APPL1 translocates from the membranes to the nucleus where it interacts with the nucleosome remodeling and histone deacetylase multiprotein complex NuRD/MeCP1, an established regulator of chromatin structure and gene expression. Both APPL1 and APPL2 are essential for cell proliferation and their function requires Rab5 binding. Our findings identify an endosomal compartment bearing Rab5 and APPL proteins as an intermediate in signaling between the plasma membrane and the nucleus.
Resumo:
In this review we provide a brief background on the cell cycle and then focus on two novel and emerging areas of cell cycle research that may prove to have significant relevance to the development of novel anticancer agents. In particular, we review the emerging evidence to suggest that histone deacetylase inhibitors may possess cancer cell-specific cytotoxicity due to their ability to target a novel G2/M checkpoint. We also review the recent literature supporting the proposition that inhibition of E2F activity in epithelial cancer cells may prove to be a useful differentiation therapy that operates via cell cycle-dependent and cell cycle-independent mechanisms.