126 resultados para D-Symmetric Operators

em University of Queensland eSpace - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigate spectral functions extracted using the maximum entropy method from correlators measured in lattice simulations of the (2+1)-dimensional four-fermion model. This model is particularly interesting because it has both a chirally broken phase with a rich spectrum of mesonic bound states and a symmetric phase where there are only resonances. In the broken phase we study the elementary fermion, pion, sigma, and massive pseudoscalar meson; our results confirm the Goldstone nature of the π and permit an estimate of the meson binding energy. We have, however, seen no signal of σ→ππ decay as the chiral limit is approached. In the symmetric phase we observe a resonance of nonzero width in qualitative agreement with analytic expectations; in addition the ultraviolet behavior of the spectral functions is consistent with the large nonperturbative anomalous dimension for fermion composite operators expected in this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We construct the Drinfeld twists ( factorizing F-matrices) of the gl(m-n)-invariant fermion model. Completely symmetric representation of the pseudo-particle creation operators of the model are obtained in the basis provided by the F-matrix ( the F-basis). We resolve the hierarchy of the nested Bethe vectors in the F-basis for the gl(m-n) supersymmetric model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Lanczos algorithm is appreciated in many situations due to its speed. and economy of storage. However, the advantage that the Lanczos basis vectors need not be kept is lost when the algorithm is used to compute the action of a matrix function on a vector. Either the basis vectors need to be kept, or the Lanczos process needs to be applied twice. In this study we describe an augmented Lanczos algorithm to compute a dot product relative to a function of a large sparse symmetric matrix, without keeping the basis vectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We find necessary and sufficient conditions for completing an arbitrary 2 by n latin rectangle to an n by n symmetric latin square, for completing an arbitrary 2 by n latin rectangle to an n by n unipotent symmetric latin square, and for completing an arbitrary 1 by n latin rectangle to an n by n idempotent symmetric latin square. Equivalently, we prove necessary and sufficient conditions for the existence of an (n - 1)-edge colouring of K-n (n even), and for an n-edge colouring of K-n (n odd) in which the colours assigned to the edges incident with two vertices are specified in advance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A central feature in the Hilbert space formulation of classical mechanics is the quantisation of classical Lionville densities, leading to what may be termed Groenewold operators. We investigate the spectra of the Groenewold operators that correspond to Gaussian and to certain uniform Lionville densities. We show that when the classical coordinate-momentum uncertainty product falls below Heisenberg's limit, the Groenewold operators in the Gaussian case develop negative eigenvalues and eigenvalues larger than 1. However, in the uniform case, negative eigenvalues are shown to persist for arbitrarily large values of the classical uncertainty product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recursive filters are widely used in image analysis due to their efficiency and simple implementation. However these filters have an initialisation problem which either produces unusable results near the image boundaries or requires costly approximate solutions such as extending the boundary manually. In this paper, we describe a method for the recursive filtering of symmetrically extended images for filters with symmetric denominator. We begin with an analysis of symmetric extensions and their effect on non-recursive filtering operators. Based on the non-recursive case, we derive a formulation of recursive filtering on symmetric domains as a linear but spatially varying implicit operator. We then give an efficient method for decomposing and solving the linear implicit system, along with a proof that this decomposition always exists. This decomposition needs to be performed only once for each dimension of the image. This yields a filtering which is both stable and consistent with the ideal infinite extension. The filter is efficient, requiring less computation than the standard recursive filtering. We give experimental evidence to verify these claims. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By using a complex field with a symmetric combination of electric and magnetic fields, a first-order covariant Lagrangian for Maxwell's equations is obtained, similar to the Lagrangian for the Dirac equation. This leads to a dual-symmetric quantum electrodynamic theory with an infinite set of local conservation laws. The dual symmetry is shown to correspond to a helical phase, conjugate to the conserved helicity. There is also a scaling symmetry, conjugate to the conserved entanglement. The results include a novel form of the photonic wavefunction, with a well-defined helicity number operator conjugate to the chiral phase, related to the fundamental dual symmetry. Interactions with charged particles can also be included. Transformations from minimal coupling to multi-polar or more general forms of coupling are particularly straightforward using this technique. The dual-symmetric version of quantum electrodynamics derived here has potential applications to nonlinear quantum optics and cavity quantum electrodynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We review the recent progress on the construction of the determinant representations of the correlation functions for the integrable supersymmetric fermion models. The factorizing F-matrices (or the so-called F-basis) play an important role in the construction. In the F-basis, the creation (and the annihilation) operators and the Bethe states of the integrable models are given in completely symmetric forms. This leads to the determinant representations of the scalar products of the Bethe states for the models. Based on the scalar products, the determinant representations of the correlation functions may be obtained. As an example, in this review, we give the determinant representations of the two-point correlation function for the U-q(gl(2 vertical bar 1)) (i.e. q-deformed) supersymmetric t-J model. The determinant representations are useful for analyzing physical properties of the integrable models in the thermodynamical limit.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the absence of an external frame of reference-i.e., in background independent theories such as general relativity-physical degrees of freedom must describe relations between systems. Using a simple model, we investigate how such a relational quantum theory naturally arises by promoting reference systems to the status of dynamical entities. Our goal is twofold. First, we demonstrate using elementary quantum theory how any quantum mechanical experiment admits a purely relational description at a fundamental. Second, we describe how the original non-relational theory approximately emerges from the fully relational theory when reference systems become semi-classical. Our technique is motivated by a Bayesian approach to quantum mechanics, and relies on the noiseless subsystem method of quantum information science used to protect quantum states against undesired noise. The relational theory naturally predicts a fundamental decoherence mechanism, so an arrow of time emerges from a time-symmetric theory. Moreover, our model circumvents the problem of the collapse of the wave packet as the probability interpretation is only ever applied to diagonal density operators. Finally, the physical states of the relational theory can be described in terms of spin networks introduced by Penrose as a combinatorial description of geometry, and widely studied in the loop formulation of quantum gravity. Thus, our simple bottom-up approach (starting from the semiclassical limit to derive the fully relational quantum theory) may offer interesting insights on the low energy limit of quantum gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various stocks of Drosophila mauritiana and D. sechellia were found to be infected with Wolbachia, a Rickettsia-like bacterium that is known to cause cytoplasmic incompatibility and other reproductive abnormalities in arthropods. Testing for the expression of cytoplasmic incompatibility in these two species showed partial incompatibility in D. sechellia but no expression of incompatibility in D. mauritiana. To determine whether absence of cytoplasmic incompatibility in D. mauritiana was due to either the bacterial or host genome, we transferred bacteria from D. mauritiana into an uninfected strain of D. simulans, a host species known to express high levels of incompatibility with endogenous Wolbachia. We also performed the reciprocal transfer of the natural D. simulans Riverside infection into a tetracycline-treated stock of D. mauritiana. In each case, the ability to express incompatibility was unaltered by the different host genetic background. These experiments indicate that in D. simulans and D. mauritiana expression of the cytoplasmic incompatibility phenotype is determined by the bacterial strain and that D. mauritiana harbors a neutral strain of Wolbachia.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-dimensional Hubbard model is integrable in the sense that it has an infinite family of conserved currents. We explicitly construct a ladder operator which can be used to iteratively generate all of the conserved current operators. This construction is different from that used for Lorentz invariant systems such as the Heisenberg model. The Hubbard model is not Lorentz invariant, due to the separation of spin and charge excitations. The ladder operator is obtained by a very general formalism which is applicable to any model that can be derived from a solution of the Yang-Baxter equation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Representations of the non-semisimple superalgebra gl(2/2) in the standard basis are investigated by means of the vector coherent state method and boson-fermion realization. All finite-dimensional irreducible typical and atypical representations and lowest weight (indecomposable) Kac modules of gl(2/2) are constructed explicity through the explicit construction of all gl(2) circle plus gl(2) particle states (multiplets) in terms of boson and fermion creation operators in the super-Fock space. This gives a unified and complete treatment of finite-dimensional representations of gl(2/2) in explicit form, essential for the construction of primary fields of the corresponding current superalgebra at arbitrary level.