140 resultados para D Deficiency

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: There is growing evidence that vitamin D is active in the brain but until recently there was a lack of evidence about its role during brain development. Guided by certain features of the epidemiology of schizophrenia, we have explored the role of vitamin D in the developing brain and behaviour using whole animal models. Methods: Sprague-Dawley rats were fed a vitamin D deficient diet (DVD) or control diet 6 weeks prior to mating and housed under UVB-free lighting conditions. On the day of birth all rats were fed a control diet for the remainder of the study. We observed behaviour at two timepoints; on the day of birth to study maternal behaviour, and at 10 weeks of age to study offspring behaviour in adulthood, under baseline and drug induced conditions (MK-801, haloperidol, amphetamine). Results: Prenatal vitamin D deficiency results in subtle alterations in maternal behaviour as well as long lasting effects on the adult offspring, despite a return to normal vitamin D levels during postnatal life. These affects were specific to transient prenatal vitamin D depletion as adult vitamin D depletion, combined prenatal and chronic postnatal vitamin D depletion, or ablation of the vitamin D receptor in mice led to markedly different outcomes. Conclusions: The developmental vitamin D (DVD) model now draws strength from epidemiological evidence of schizophrenia and animal experiments. Although the DVD model does not replicate every aspect of schizophrenia, it has several attractive features: (1) the exposure is based on clues from epidemiology; (2) it reproduces the increase in lateral ventricles; (3) it reproduces well-regarded behavioural phenotypes associated with schizophrenia (e.g. MK- 801 induced hyperlocomotion); and (4) it implicates a disturbance in dopamine signaling. In summary, low prenatal levels of vitamin D can influence critical components of orderly brain development and that this has a long lasting effect on behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is growing evidence that 1,25-dihydroxyvitamin D-3 is involved in normal brain development. The aim of this study was to examine the impact of prenatal and postnatal hypovitaminosis D on prepulse inhibition (PPI) of acoustic startle in adult rats. We compared six groups of rats: control rats with normal vitamin D throughout life and normal litter size (Litter); control rats with normal vitamin D but with a reduced litter size of two (Control); offspring from reduced litters of vitamin D deplete mothers who were repleted at birth (Birth), repleted at weaning (Weaning) or remained on a deplete diet until 10 weeks of age (Life); or control rats that were placed on a vitamin D-deficient diet from 5 to 10 weeks of age (Adult). All rats were tested in acoustic startle chambers at 5 and 10 weeks of age for acoustic startle responses and for PPI. There were no significant group differences at 5 weeks of age on the acoustic startle response or on PPI. At 10 weeks of age, rats in the Life group only had impaired PPI despite having normal acoustic startle responses. We conclude that combined prenatal and chronic postnatal hypovitaminosis D, but not early life hypovitaminosis D, alters PPI. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rat experiments have shown that prenatal Vitamin D deficiency leads to altered neonatal brain morphology, cell density and neurotrophin expression. In the current study we examined the hypothesis that Vitamin D deficiency during early development alters adult behaviour even when there is an intervening period in which the animal receives normal Vitamin D in later development. Rats were conceived and born to Vitamin D deficient dams (Birth); conceived, born and weaned from Vitamin D deficient dams (Weaning); or deficient in Vitamin D from conception to 10 weeks of age (Life). Litters were standardized to three males and three females per litter. All rat offspring were rendered normocalcaemic with calcium supplemented water (2 mM) after weaning. Control animals were born to mothers fed a normal diet but subject to similar litter size and calcium supplementation. At 10 weeks all animals were tested on the holeboard test, elevated plus maze test, social interaction observation, acoustic startle response test, prepulse inhibition of the acoustic startle response and a forced swim test. Early Vitamin D deficiency (Birth group) enhanced locomotion in the holeboard test and increased activity in the elevated plus maze. Thus, transient prenatal Vitamin D deficiency induces hyperlocomotion in adulthood, without severe motor abnormalities. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on clues from epidemiology, low prenatal vitamin D has been proposed as a candidate risk factor for schizophrenia. Recent animal experiments have demonstrated that transient prenatal vitamin D deficiency is associated with persistent alterations in brain morphology and neurotrophin expression. In order to explore the utility of the vitamin D animal model of schizophrenia, we examined different types of learning and memory in adult rats exposed to transient prenatal vitamin D deficiency. Compared to control animals, the prenatally deplete animals had a significant impairment of latent inhibition, a feature often associated with schizophrenia. In addition, the deplete group was (a) significantly impaired on hole board habituation and (b) significantly better at maintaining previously learnt rules of brightness discrimination in a Y-chamber. In contrast, the prenatally deplete animals showed no impairment on the spatial learning task in the radial maze, nor on two-way active avoidance learning in the shuttle-box. The results indicate that transient prenatal vitamin D depletion in the rat is associated with subtle and discrete alterations in learning and memory. The behavioural phenotype associated with this animal model may provide insights into the neurobiological correlates of the cognitive impairments of schizophrenia. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transient prenatal vitamin D deficiency produces hyperlocomotion in the adult rat. The aim of this study was to examine the effects of acute restraint on the behaviour of DVD and control rats in the open field. Rats were conceived and born to developmentally vitamin D (DVD) deficient or replete (control) dams and, at 8 weeks of age, were monitored for 30 min in an open field using automated video tracking software. Half of the rats were restrained within a towel for 5 min immediately before the open field test. The remainder received minimal handling prior to the open field test. Repeating previous findings, DVD deficient animals had enhanced locomotion during the first 10 min of the open field test compared to control rats. By contrast, there were no differences in locomotor activity after acute restraint stress. The time rats spent in the corners and side of the open field was affected by prenatal diet. DVD rats spent less time in the corners and more time in the side than control rats across the whole 30 min test. This difference was not seen in rats with acute restraint stress. The time spent in the centre was not altered by prenatal diet or acute restraint. Thus, transient prenatal vitamin D deficiency induces a transient spontaneous hyperlocomotion in adulthood that is modulated by acute restraint stress. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Developmental vitamin D deficiency (DVD) has been shown to alter the orderly pattern of brain development. Even though the period of vitamin D deficiency is restricted to gestation this is sufficient to induce behavioural abnormalities in the adult offspring consistent with those seen in many animal models of schizophrenia. Given that some of these behavioural alterations could also be an indirect result of either impaired maternal hypothalamic pituitary axis (HPA) function (which in turn could influence maternal care) or the result of a permanent alteration in HPA function in the adult offspring we have examined HPA status in both maternal animals and adult offspring. In this study we have established that HPA function is normal in the maternally vitamin D deficient rat. We replicate the behavioural phenotype of hyperlocomotion whilst establishing that HPA function is also unchanged in the adult mate offspring. We conclude that the behavioural alterations induced by DVD deficiency are due to some adverse event in brain development rather than via an alteration in stress response. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Abnormalities of calcium and vitamin D metabolism in cystic fibrosis (CF) are well documented. We tested the hypothesis that alterations in calcium metabolism are related to vitamin D deficiency, and that bone resorption is increased relative to accretion in patients with CF. Calcitropic hormones, electrolytes, osteocalcin (OC) and bone alkaline phosphatase (BAP), (markers of bone mineralisation), urinary deoxypyridinoline [total (t) Dpd, a marker of bone resorption] and lumbar spine bone mineral density (LS BMD), expressed as a z-score, were measured in 149 (81 M) CF and 141 (61 M) control children aged 5.3-10.99 years, adolescents aged 11-17.99 years and adults aged 18-55.9 years. Data were analysed by multiple regression to adjust for age. In patients, FEV1% predicted and CRP (as disease severity markers), genotype and pancreatic status (PS) were recorded. The distribution of PTH differed between groups (P

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: We have previously shown that the offspring of vitamin D3 depleted rats have enlarged ventricles and altered neurotrophin profiles (reduced NGF and GDNF). These findings enhance the biological plausibility that low prenatal vitamin D may be a risk factor for schizophrenia. Our recent behavioural studies have found that adult rats with developmental vitamin D deficiency (DVD) have a subtle increase in baseline locomotor activity and a heightened response to dopamine (DA) antagonists. The aim of this study was to investigate brain DA neurochemistry in the DVD model. Methods: We examined cerebrums and striatal tissue from neonates and a variety of brain tissues from the remaining littermates at adulthood. DA, DOPAC, HVA, serotonin and 5HIAA were analysed by HPLC. Single point comparisons for DA1, DA2 and NMDA receptors were also assessed in these tissues. Results: Significant increases in DA and HVA were found in brains from DVD deplete neonates (P=0.01). However, DA and its metabolites were not increased in either the neonate or adult striatum, however there was a trend towards increased DA and its metabolites in the accumbens (P=0.1). Receptor densities were unaffected by prenatal vitamin D levels. Conclusions: Although the effect of maternal diet appears to increase DA production and turnover in neonatal brain, this does not persist into adulthood. Thus other factors must underlie the increased locomotor activity noted in these animals. Future experiments will concentrate on monitoring accumbens and striatal DA release and turnover using microdialysis in pharmacologically challenged behavioural paradigms. References: Eyles D, Brown J; Mackay-Sim A, McGrath J, Feron F. (2003) Vitamin D3 and brain development. Neuroscience 118 (3) 641–653. Burne T, McGrath J, Eyles D, Mackay-Sim A. Behavioural characterization of vitamin D receptor knockout mice. (2005) Behavioural Brain Res: 157 299–308.