16 resultados para Cytotoxic T Lymphocyte

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although hepatitis B surface antigen (HBsAg) per se is highly immunogenic, its use as a vector for the delivery of foreign cytotoxic T-lymphocyte (CTL) epitopes has met with little success because of constraints on HBsAg stability and secretion imposed by the insertion of foreign sequence into critical hydrophobic/amphipathic regions. Using a strategy entailing deletion of DNA encoding HBsAg-specific CTL epitopes and replacement with DNA encoding foreign CTL epitopes, we have derived chimeric HBsAg DNA immunogens which elicited effector and memory CTL responses in vitro, and pathogen- and tumor-protective responses in vivo, when the chimeric HBsAg DNAs were used to immunize mice. We further show that HBsAg DNA recombinant for both respiratory syncytial virus and human papillomavirus CTL epitopes elicited simultaneous responses to both pathogens. These data demonstrate the efficacy of HBsAg DNA as a vector for the delivery of disease-relevant protective CTL responses. They also suggest the applicability of the approach of deriving chimeric HBsAg DNA immunogens simultaneously encoding protective CTL epitopes for multiple diseases. The DNAs we tested formed chimeric HBsAg virus-like particles (VLPs). Thus, our results have implications for the development of vaccination strategies using either chimeric HBsAg DNA or VLP vaccines. HBsAg is the globally administered vaccine for hepatitis B virus infection, inviting its usage as a vector for the delivery of immunogens from other diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human metapneumovirus (hMPV) has emerged as an important human respiratory pathogen causing upper and lower respiratory tract infections in young children and older adults. In addition, hMPV infection is associated with asthma exacerbation in young children. Recent epidemiological evidence indicates that hMPV may cocircullate with human respiratory syncytial virus (hRSV) and mediate clinical disease similar to that seen with hRSV. Therefore, a vaccine for hMPV is highly desirable. In the present study, we used predictive bioinformatics, peptide immunization, and functional T-cell assays to define hMPV cytotoxic T-lymphocyte (CTL) epitopes recognized by mouse T cells restricted through several major histocompatibility complex class I alleles, including HILA-A*0201. We demonstrate that peptide immunization with hMPV CTL epitopes reduces viral load and immunopathollogy in the lungs of hMPV-challenged mice and enhances the expression of Th1-type cytokines (gamma interferon and interleukin-12 [IL-12]) in lungs and regional lymph nodes. In addition, we show that levels of Th2-type cytolkines (IL-10 and IL-4) are significantly lower in hMPV CTL epitope-vaccinated mice challenged with hMPV. These results demonstrate for the first time the efficacy of an hMPV CTL epitope vaccine in the control of hMPV infection in a murine model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-encoded nuclear antigen (EBNA)1 is thought to escape cytotoxic T lymphocyte (CTL) recognition through either self-inhibition of synthesis or by blockade of proteasomal degradation by the glycine-alanine repeat (GAr) domain. Here we show that EBNA1 has a remarkably varied cell type-dependent stability. However, these different degradation rates do not correspond to the level of major histocompatibility complex class I-restricted presentation of EBNA1 epitopes. In spite of the highly stable expression of EBNA1 in B cells, CTL epitopes derived from this protein are efficiently processed and presented to CD8(+) T cells. Furthermore, we show that EBV-infected B cells can readily activate EBNA1-specific memory T cell responses from healthy virus carriers. Functional assays revealed that processing of these EBNA1 epitopes is proteasome and transporter associated with antigen processing dependent. We also show that the endogenous presentation of these epitopes is dependent on the newly synthesized protein rather than the long-lived stable EBNA1. Based on these observations, we propose that defective ribosomal products, not the full-length antigen, are the primary source of endogenously processed CD8(+) T cell epitopes front EBNA1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vaccine-induced CD8 T cells directed to tumourspecific antigens are recognised as important components of protective and therapeutic immunity against tumours. Where tumour antigens have pathogenic potential or where immunogenic epitopes are lost from tumours, development of subunit vaccines consisting of multiple individual epitopes is an attractive alternative to immunising with whole tumour antigen. In the present study we investigate the efficacy of two DNA-based multiepitope('polytope') vaccines containing murine (H-2(b)) and human (HLA-A* 0201)-restricted epitopes of the E7 oncoprotein of human papillomavirus type 16, in eliciting tumour-protective cytotoxic T-lymphocyte (CTL) responses. We show that the first of these polytopes elicited powerful effector CTL responses ( measured by IFN-gamma ELISpot) and long-lived memory CTL responses ( measured by functional CTL assay and tetramers) in immunised mice. The responses could be boosted by immunisation with a recombinant vaccinia virus expressing the polytope. Responses induced by immunisation with polytope DNA alone partially protected against infection with recombinant vaccinia virus expressing the polytope. Complete protection was afforded against challenge with an E7-expressing tumour, and reduced growth of nascent tumours was observed. A second polytope differing in the exact composition and order of CTL epitopes, and lacking an inserted endoplasmic reticulum targeting sequence and T-helper epitope, induced much poorer CTL responses and failed to protect against tumour challenge. These observations indicate the validity of a DNA polytope vaccine approach to human papillomavirus E7 - associated carcinoma, and underscore the importance of design in polytope vaccine construction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The manipulation of dendritic cells (DCs) ex vivo to present tumor-associated antigens for the activation and expansion of tumor-specific cytotoxic T lymphocytes (CTLs) attempts to exploit these cells’ pivotal role in immunity. However, significant improvements are needed if this approach is to have wider clinical application. We optimized a gene delivery protocol via electroporation for cord blood (CB) CD34+ DCs using in vitro–transcribed (IVT) mRNA. We achieved > 90% transfection of DCs with IVT-enhanced green fluorescent protein mRNA with > 90% viability. Electroporation of IVT-mRNA up-regulated DC costimulatory molecules. DC processing and presentation of mRNA-encoded proteins, as major histocompatibility complex/peptide complexes, was established by CTL assays using transfected DCs as targets. Along with this, we also generated specific antileukemic CTLs using DCs electroporated with total RNA from the Nalm-6 leukemic cell line and an acute lymphocytic leukemia xenograft. This significant improvement in DC transfection represents an important step forward in the development of immunotherapy protocols for the treatment of malignancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although the importance of CD4(+) T cell responses to human cytonnegalovirus (HCMV) has recently been recognized in transplant and immunosuppressed patients, the precise specificity and nature of this response has remained largely unresolved. In the present study we have isolated CD4(+) CTL which recognize epitopes from HCMV glycoproteins gB and gH in association with two different HLA-DR antigens, DRA1*0101/DRB1*0701 (DR7) and DRA1*0101/DRB1*1101 (DR11). Comparison of amino acid sequences of HICMV isolates revealed that the gB and gH epitope sequences recognized by human CD4(+) T cells were not only conserved in clinical isolates from HCMV but also in CMV isolates from higher primates (chimpanzee, rhesus and baboon). Interestingly, these epitope sequences from chimpanzee, rhesus and baboon CMV are efficiently recognized by human CD4(+) CTL. More importantly, we show that gB-specific T cells from humans can also efficiently lyse pepticle-sensitized Patr-DR7(+) cells from chimpanzees. These findings suggest that conserved gB and gH epitopes should be considered while designing a prophylactic vaccine against HCMV. In addition, they also provide a functional basis for the conservation of MHC class 11 lineages between humans and Old World primates and open the possibility for the use of such primate models in vaccine development against HCMV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient in vitro expansion of antigen-specific CD8(+) cytotoxic T lymphocytes (CTL) for use in adoptive immunotherapy represents an important clinical goal. Furthermore, the avidity of expanded CTL populations often correlates closely with clinical outcome. In our study, high-avidity CTL lines could be expanded ex vivo from an antigen-primed animal using low peptide concentration, and intermediate peptide concentrations favored the generation of lower avidity CTL. Further increases in peptide concentration during culture inhibited the expansion of all peptide-specific CD8(+) cells. In contrast, a single amino acid variant peptide efficiently generated functional CTL populations at high or low peptide concentration, which responded to wild-type epitope with the lowest average avidity seen in this study. We propose that for some peptides, the efficient generation of low-avidity CTL responses will be favored by stimulation with altered peptide rather than high concentrations of wild-type epitope. In addition, some variant peptides designed to have improved binding to major histocompatibility complex class I may reduce rather than enhance the functional avidity for the wild-type peptide of ex vivo-expanded CTL. These observations are relevant to in vitro expansion of CTL for immunotherapy and strategies to elicit regulatory or therapeutic immunity to neo-self-antigen when central tolerance has eliminated high-avidity, cognate T cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an effort to better understand the antiproliferative effects of the tridentate hydrazone chelators di-2-pyridyl ketone isonicotinoyl hydrazone (HPKIH) and di-2-pyridyl ketone benzoyl hydrazone (HPKBH), we report the coordination chemistry of these ligands with the divalent metal ions, Mn, Co, Ni, Cu, and Zn. These complexes are compared with their Fe-II analogues which were reported previously. The crystal structures of Co(PKIH)(2), Ni(PKIH)(2), Cu(PKIH)(2), Mn(PKBH)(2), Ni(PKBH)(2), Cu(PKBH)(2), and Zn(PKBH)(2) are reported where similar bis-tridenate coordination modes of the ligands are defined. In pure DMF, all complexes except the Zn-II compounds exhibit metal-centered M-III/II (Mn, Fe, Co, Ni) or M-II/I (Cu) redox processes. All complexes show ligand-centered reductions at low potential. Electrochemistry in a mixed water/DMF solvent only elicited metal-centered responses from the Co and Fe complexes. Remarkably, all complexes show antiproliferative activity against the SK-N-MC neuroepithelioma cell line similar to (HPKIH) or significantly greater than that of the (HPKBH) ligand which suggests a mechanism that does not only involve the redox activity of these complexes. In fact, we suggest that the complexes act as lipophilic transport shuttles that allow entrance to the cell and enable the delivery of both the ligand and metal which act in concert to inhibit proliferation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of beta 1 and alpha 5 integrins and major histocompatibility complex I molecules. The level of GIP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP(1) expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GIP-expressing cells with GIP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.