5 resultados para Cytosine arabionside
em University of Queensland eSpace - Australia
Resumo:
OBJECTIVE: Although little studied in developing countries, multidrug-resistant tuberculosis (MDR-TB) is considered a major threat. We report the molecular epidemiology, clinical features and outcome of an emerging MDR-TB epidemic. METHODS: In 1996 all tuberculosis suspects in the rural Hlabisa district, South Africa, had sputum cultured, and drug susceptibility patterns of mycobacterial isolates were determined. Isolates with MDR-TB (resistant to both isoniazid and rifampicin) were DNA fingerprinted by restriction fragment length polymorphism (RFLP) using IS6110 and polymorphic guanine-cytosine-rich sequence-based (PGRS) probes. Patients with MDR-TB were traced to determine outcome. Data were compared with results from a survey of drug susceptibility done in 1994. RESULTS: The rate of MDR-TB among smear-positive patients increased six-fold from 0.36% (1/275) in 1994 to 2.3% (13/561) in 1996 (P = 0.04). A further eight smear-negative cases were identified in 1996 from culture, six of whom had not been diagnosed with tuberculosis. MDR disease was clinically suspected in only five of the 21 cases (24%). Prevalence of primary and acquired MDR-TB was 1.8% and 4.1%, respectively. Twelve MDR-TB cases (67%) were in five RFLP-defined clusters. Among 20 traced patients, 10 (50%) had died, five had active disease (25%) and five (25%) were apparently cured. CONCLUSIONS: The rate of MDR-TB has risen rapidly in Hlabisa, apparently due to both reactivation disease and recent transmission. Many patients were not diagnosed with tuberculosis and many were not suspected of drug-resistant disease, and outcome was poor.
Resumo:
Within a 199 866 base pair (bp) portion of a Plasmodium vivax chromosome we identified a conserved linkage group consisting of at least 41 genes homologous to Plasmodium falciparum genes located on chromosome 3. There were no P. vivax homologues of the P. falciparum cytoadherence-linked asexual genes clag 3.2, clag 3.1 and a var C pseudogene found on the P. vivax chromosome. Within the conserved linkage group, the gene order and structure are identical to those of P. falciparum chromosome 3. This conserved linkage group may extend to as many as 190 genes. The subtelomeric regions are different in size and the P. vivax segment contains genes for which no P. falciparum homologues have been identified to date. The size difference of at least 900 kb between the homologous P. vivax chromosome and P. falciparum chromosome 3 is presumably due to a translocation. There is substantial sequence divergence with a much higher guanine + cytosine (G + C) content in the DNA and a preference for amino acids using GC-rich codons in the deduced proteins of P. vivax. This structural conservation of homologous genes and their products combined with sequence divergence at the nucleotide level makes the P. vivax genome a powerful tool for comparative analyses of Plasmodium genomes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Background: Treatment with interferon and subcutaneous cytarabine produces superior cytogenetic responses in chronic myeloid leukaemia (CML) than treatment with interferon alone, but at the expense of greater toxicity. Cytarabine ocfosfate (YNK01) is an oral precursor of cytarabine that may overcome some of the inconvenience and toxicities associated with subcutaneous cytarabine administration. Patients and methods: We studied the efficacy and tolerability of combination therapy with interferon-alpha-2b and YNK01 in patients with newly diagnosed, untreated CML. Forty patients were treated with interferon-alpha-2b (5 MU/m(2)/day) plus monthly courses of YNK01 (600 mg/day for 10 days) for I year. Results: The 6-month complete haematological response rate was 63% and the 1-year major cytogenetic response rate was 30%, with 10% of cytogenetic responses being complete. With a median follow-up of 57 months, the estimated 5-year overall survival was 86% (95% confidence interval 70% to 94%). Treatment tolerability was poor, with toxicity leading to discontinuation of one or both drugs in 60% of cases. The median daily dose of interferon alpha-2b was 7.75 MU and the median dose of YNK01 was 600 mg/day for each 10-day treatment cycle. Conclusions: Interferon-alpha-2b and YNK01 produce cytogenetic responses comparable to those achieved with interferon-alpha-2b and parenteral cytarabine, although toxicity was excessive. Alternate dosing strategies may enhance the tolerability of YNK01.
Resumo:
Bacterial DNA activates mouse macrophages, B cells, and dendritic cells in a TLR9-dependent manner. Although short ssCpG-containing phosphodiester oligonucleotides (PO-ODN) can mimic the action of bacterial DNA on macrophages, they are much less immunostimulatory than Escherichia coli DNA. In this study we have assessed the structural differences between E. coli DNA and PO-ODN, which may explain the high activity of bacterial DNA on macrophages. DNA length was found to be the most important variable. Double-strandedness was not responsible for the increased activity of long DNA. DNA adenine methyltransferase (Dam) and DNA cytosine methyltransferase (Dcm) methylation of E. coli DNA did not enhance macrophage NO production. The presence of two CpG motifs on one molecule only marginally improved activity at low concentration, suggesting that ligand-mediated TLR9 cross-linking was not involved. The major contribution was from DNA length. Synthetic ODN > 44 nt attained the same levels of activity as bacterial DNA. The response of macrophages to CpG DNA requires endocytic uptake. The length dependence of the CpG ODN response was found to correlate with the presence in macrophages of a length-dependent uptake process for DNA. This transport system was absent from B cells and fibroblasts.