25 resultados para Cytogenetic markers
em University of Queensland eSpace - Australia
Resumo:
The Western European house mouse, Mus domesticus, includes many distinct Robertsonian (Rb) chromosomal races. Two competing hypotheses may explain the distribution of Rb translocations found in different populations: they may have arisen independently multiple times or they may have arisen once and been spread through long distance dispersal. We investigated the origin of the Rb 5.15 translocation using 6 microsatellite loci linked to the centromeres of chromosomes 5 and 15 in 84 individuals from 3 Rb populations and 4 neighboring standard-karyotype populations. Microsatellite variation on the 5.15 metacentric chromosomes was significantly reduced relative to the amount of variation found on acrocentric chromosomes 5 and 15, suggesting that linked microsatellite loci can track specific mutational events. Phylogenetic analyses resulted in trees which are consistent with multiple origins of the 5.15 metacentric found in the three Rb populations. These results suggest that cytologically indistinguishable mutations have arisen independently in natural populations of house mice.
Resumo:
Contrary to the common pattern of spatial terms being metaphorically extended to location in time, the Australian language Jingulu shows an unusual extension of temporal markers to indicate location in space. Light verbs, which typically encode tense, aspect, mood and associated motion, are occasionally found on nouns to indicate the relative location of the referent with respect to the speaker. It is hypothesised that this pattern resulted from the reduction of verbal clauses used as relative modifiers to the nouns in question.
Resumo:
Genetic markers that distinguish fungal genotypes are important tools for genetic analysis of heterokaryosis and parasexual recombination in fungi. Random amplified polymorphic DNA (RAPD) markers that distinguish two races of biotype B of Colletotrichum gloeosporioides infecting the legume Stylosanthes guianensis were sought. Eighty-five arbitrary oligonucleotide primers were used to generate 895 RAPD bands but only two bands were found to be specifically amplified from DNA of the race 3 isolate. These two RAPD bands were used as DNA probes and hybridised only to DNA of the race 3 isolate. Both RAPD bands hybridised to a dispensable 1.2 Mb chromosome of the race 3 isolate. No other genotype-specific chromosomes or DNA sequences were identified in either the race 2 or race 3 isolates. The RAPD markers hybridised to a 2 Mb chromosome in all races of the genetically distinct biotype A pathogen which infects other species of Stylosanthes as well as S. guianensis. The experiments indicate that RAPD analysis is a potentially useful tool for obtaining genotype-and chromosome-specific DNA probes in closely related isolates of one biotype of this fungal pathogen.
Resumo:
Carbohydrate-deficient transferrin (CDT) has emerged as the best new marker for alcohol abuse. Recently plasma immunoglobulin A (IgA) reactivity with acetaldehyde (AcH)-modified proteins, or the modified proteins per se, have been proposed as a markers for high levels of alcohol consumption. In this study, we have compared CDT, IgA reactivity with AcH adducts (IgA ASR), and AcH-modified albumin with conventional markers of high alcohol intake in groups with well-defined drinking histories, The plasma activity of ALT, AST, and gamma-glutamyltransferase increased steadily with increasing alcohol consumption, CDT and AcH-modified albumin showed a similar pattern, whereas IgA ASR appeared only to be elevated after a threshold level of consumption had been reached, Neither CDT IgA ASR or AcH-modified albumin correlated strongly with any of the conventional markers or each other. This study shows that CDT, IgA ASR, AcH-modified albumin, and the conventional markers are not related, but suggests that the concurrent use of CDT and IgA ASR may lead to better identification of high alcohol intake.
Resumo:
Familial hyperaldosteronism type II (FH-II) is caused by adrenocortical hyperplasia or aldosteronoma or both and is frequently transmitted in an autosomal dominant fashion. Unlike FH type I (FI-I-I), which results from fusion of the CYP11B1 and CYP11B2 genes, hyperaldosteronism in FH-II is not glucocorticoid remediable. A large family with FH-II was used for a genome wide search and its members were evaluated by measuring the aldosterone:renin ratio. In those with an increased ratio, FH-II was confirmed by fludrocortisone suppression testing. After excluding most of the genome, genetic linkage was identified with a maximum two point lod score of 3.26 at theta =0, between FH-II in this family and the polymorphic markers D7S511, D7S517, and GATA24F03 on chromosome 7,a region that corresponds to cytogenetic band 7p22. This is the first identified locus for FH-II; its molecular elucidation may provide further insight into the aetiology of primary aldosteronism.
Resumo:
Background and Purpose - Epidemiological and laboratory studies suggest that increasing concentrations of plasma homocysteine ( total homocysteine [tHcy]) accelerate cardiovascular disease by promoting vascular inflammation, endothelial dysfunction, and hypercoagulability. Methods - We conducted a randomized controlled trial in 285 patients with recent transient ischemic attack or stroke to examine the effect of lowering tHcy with folic acid 2 mg, vitamin B-12 0.5 mg, and vitamin B-6 25 mg compared with placebo on laboratory markers of vascular inflammation, endothelial dysfunction, and hypercoagulability. Results - At 6 months after randomization, there was no significant difference in blood concentrations of markers of vascular inflammation (high-sensitivity C-reactive protein [P = 0.32]; soluble CD40L [ P = 0.33]; IL-6 [P = 0.77]), endothelial dysfunction ( vascular cell adhesion molecule-1 [P = 0.27]; intercellular adhesion molecule-1 [P = 0.08]; von Willebrand factor [P = 0.92]), and hypercoagulability (P-selectin [P = 0.33]; prothrombin fragment 1 and 2 [P = 0.81]; D-dimer [P = 0.88]) among patients assigned vitamin therapy compared with placebo despite a 3.7-mumol/L (95% CI, 2.7 to 4.7) reduction in total homocysteine (tHcy). Conclusions - Lowering tHcy by 3.7 mumol/L with folic acid-based multivitamin therapy does not significantly reduce blood concentrations of the biomarkers of inflammation, endothelial dysfunction, or hypercoagulability measured in our study. The possible explanations for our findings are: ( 1) these biomarkers are not sensitive to the effects of lowering tHcy (eg, multiple risk factor interventions may be required); ( 2) elevated tHcy causes cardiovascular disease by mechanisms other than the biomarkers measured; or ( 3) elevated tHcy is a noncausal marker of increased vascular risk.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
Cytogenetic and loss of heterozygosity (LOH) studies have long indicated the presence of a tumor suppressor gene (TSG) on 90 involved in the development of melanoma, Although LOH at 90 has been reported in approximately 60% of melanoma tumors, only 5-10% of these tumors have been shown to carry CDKN2A mutations, raising the possibility that another TSG involved in melanoma maps to chromosome 90. To investigate this possibility, a panel of 37 melanomas derived from 35 individuals was analyzed for CDKN2A mutations hy single-strand conformation polymorphism analysis and sequencing. The melanoma samples were then typed for 15 markers that map to 9p13-24 to investigate LOH trends in this region. In those tumors demonstrating retention of heterozygosity at markers flanking CDKN2A and LOH on one or both sides of the gene, multiplex microsatellite PCR was performed to rule out homozygous deletion of the region encompassing CDKN2A. CDKN2A mutations were found in tumors from 5 patients [5 (14%) of 35], 4 of which demonstrated LOH across the entire region examined. The remaining tumor with no observed LOH carried two point mutations, one on each allele, Although LOH was identified at one or more markers in 22 (59%) of 37 melanoma tumors corresponding to 20 (57%) of 35 individuals, only 11 tumors from 9 individuals [9 (26%) of 35] demonstrated LOH at D9S942 and D9S1748, the markers closest to CDKN2A. Of the remaining 11 tumors with LOH, 9 demonstrated LOH at two or more contiguous markers either centromeric and/or telomeric to CDKN2A while retaining heterozygosity at several markers adjacent to CDKN2A. Multiplex PCR revealed one tumor carried a homozygous deletion extending from D9S1748 to the IFN-alpha locus. In the remaining eight tumors, multiplex PCR demonstrated that the observed heterozygosity was not attributable to homozygous deletion and stromal contamination at D9S1748, D9S942, or D9S974, as measured by comparative amplification strengths, which indicates that retention of heterozygosity with flanking LOH does not always indicate a homozygous deletion, This report supports the conclusions of previous studies that at least two TSGs involved in melanoma development in addition to CDKN2A may reside on chromosome 9p.
Resumo:
Aims Previous studies suggest that estimated creatinine clearance, the conventional measure of renal function, does not adequately reflect charges in renal drug handling in some patients, including the immunosuppressed. The aim of this study was to develop and validate a cocktail of markers. to be given in a single administration, capable of detecting alterations in the renal elimination pathways of glomerular filtration, tubular secretion and tubular reabsorption. Methods Healthy male subjects (n = 12) received intravenously infused 2500 mg sinistrin (glomerular filtration) and 440 mg p-aminohippuric acid (PAH; anion secretion), and orally administered 100 mg fluconazole (reabsorption) and 15 mg rac-pindolol (cation secretion). The potential interaction between these markers was investigated in a pharmacokinetic study where markers (M) or fluconazole (F) were administered alone or together (M + F). Validated analytical methods were used to measure plasma and urine concentrations in order to quantify the renal handling of each marker. Plasma protein binding of fluconazole was measured by ultrafiltration. All subjects had an estimated creatinine clearance within the normal range. The renal clearance of each marker (Mean +/- s.d.) was calculated as the ratio of the amount excreted in urine and thearea-under-the-concentration-time curve. Statistical comparisons were made using a paired t-test and 95% confidence intervals were reported. Results The renal clearances of sinistrin (M: 119 +/- 31 ml min(-1); M + F: 130 +/- 40 ml min(-1); P = 0.32), PAH (M: 469 +/- 145 ml min(-1); M + F: 467 +/- 146 ml min(-1); P = 0.95), R-pindolol (M: 204 +/- 41 ml min(-1); M + F: 190 +/- 41 ml min(-1); P = 0.39; n = 11), S-pindolol (M: 225 +/- 55 ml min(-1); M + F: 209 +/- 60 ml min(-1); P = 0.27; n = 11) and fluconazole (F: 14.9 +/-3.8 ml min(-1); M + F: 13.6 +/- 3.4 ml min(-1); P = 0.16) were similar when the markers or fluconazole were administered alone (M or F) or as a cocktail (M + F). Conclusions This study found no interaction between markers and fluconazole in healthy male subjects, suggesting that a single administration of this cocktail of markers of different renal processes call be used to simultaneously investigate pathways of renal drug elimination.
Resumo:
Background: Alcohol increases body iron stores. Alcohol and iron may increase oxidative stress and the risk of alcohol-related liver disease. The relationship between low or safe levels of alcohol use and indices of body iron stores, and the factors that affect the alcohol-iron relationship, have not been fully characterized. Other aspects of the biological response to alcohol use have been reported to depend on iron status. Methods: We have measured serum iron, transferrin, and ferritin as indices of iron stores in 3375 adult twin subjects recruited through the Australian Twin Registry. Information on alcohol use and dependence and smoking was obtained from questionnaires and interviews. Results: Serum iron and ferritin increased progressively across classes of alcohol intake. The effects of beer consumption were greater than those of wine or spirits. Ferritin concentration was significantly higher in subjects who had ever been alcohol dependent. There was no evidence of interactions between HFE genotype or body mass index and alcohol. Alcohol intake-adjusted carbohydrate-deficient transferrin was increased in women in the lowest quartile of ferritin results, whereas adjusted gamma -glutamyltransferase, aspartate aminotransferase, and alanine aminotransferase values were increased in subjects with high ferritin. Conclusions: Alcohol intake at low level increases ferritin and, by inference, body iron stores. This may be either beneficial or harmful, depending on circumstances. The response of biological markers of alcohol intake can be affected by body iron stores; this has implications for test sensitivity and specificity and for variation in biological responses to alcohol use.
Resumo:
In a preliminary survey of genetic variability among 12 Australian isolates of Puccinia coronata f. sp. avenae Fraser and Led (Pca) collected from 1966 to 1993, two relatively diverse (