4 resultados para Cyclo-oxygénase-2

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological evidence and in vitro data suggest that COX-2 is a key regulator of accelerated remodeling. Accelerated states of osteoblast and osteoclast activity are regulated by prostaglandins in vitro, but experimental evidence for specific roles of cyclooxygenase-2 (COX-2) and secretory phospholipase A(2) (sPLA(2)) in activated states of remodeling in vivo is lacking. The aim of this study was to determine the effect of specific inhibitors of sPLA(2)-IIa and COX-2 on bone remodeling activated by estrogen deficiency in adult female rats. One hundred and twenty-four adult female Wistar rats were ovariectomized (OVX) or sham-operated. Rats commenced treatment 14 days after surgery with either vehicle, a COX-2 inhibitor (DFU at 0.02 mg/kg/day and 2.0 mg/kg/day) or a sPLA(2)-group-IIa inhibitor (KH064 at 0.4 mg/kg/day and 4.0 mg/kg/day). Treatment continued daily until rats were sacrificed at 70 days or 98 days post-OVX. The right tibiae were harvested, fixed and embedded in methylmethacrylate for structural histomorphometric bone analysis at the proximal tibial metaphysis. The specific COX-2 or sPLA(2) inhibitors prevented ovariectomy-induced (OVX-induced) decreases in trabecular connectivity (P < 0.05); suppressed the acceleration of bone resorption; and maintained bone turnover at SHAM levels following OVX in the rat. The sPLA2 inhibitor significantly suppressed increases in osteoclast surface induced by OVX (P < 0.05), while the effect of COX-2 inhibition was less marked. These findings demonstrate that inhibitors of COX-2 and sPLA(2)-IIa can effectively suppress OVX-induced bone loss in the adult rat by conserving trabecular bone mass and architecture through reduced bone remodeling and decreased resorptive activity. Moreover, we report an important role of sPLA(2)-IIa in osteoclastogenesis that may be independent of the COX-2 metabolic pathway in the OVX rat in vivo. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bone tissue homeostasis relies upon the ability of cells to detect and interpret extracellular signals that direct changes in tissue architecture. This study utilized a four-point bending model to create both fluid shear and strain forces (loading) during the time-dependent progression of MC3T3-E1 preosteoblasts along the osteogenic lineage. Loading was shown to increase cell number, alkaline phosphatase (ALP) activity, collagen synthesis, and the mRNA expression levels of Runx2, osteocalcin (OC), osteopontin, and cyclo-oxygenase-2. However, mineralization in these cultures was inhibited, despite an increase in calcium accumulation, suggesting that loading may inhibit mineralization in order to increase matrix deposition. Loading also increased fibroblast growth factor receptor-3 (FGFR3) expression coincident with an inhibition of FGFR1, FGFR4, FGF1, and extracellular signal-related kinase (ERK)1/2 phosphorylation. To examine whether these loading-induced changes in cell phenotype and FGFR expression could be attributed to the inhibition of ERK1/2 phosphorylation, cells were grown for 25 days in the presence of the MEK1/2 inhibitor, U0126. Significant increases in the expression of FGFR3, ALP, and OC were observed, as well as the inhibition of FGFR1, FGFR4, and FGF1. However, U0126 also increased matrix mineralization, demonstrating that inhibition of ERK1/2 phosphorylation cannot fully account for the changes observed in response to loading. in conclusion, this study demonstrates that preosteoblasts are mechanoresponsive, and that long-term loading, whilst increasing proliferation and differentiation of preosteoblasts, inhibits matrix mineralization. In addition, the increase in FGFR3 expression suggests that it may have a role in osteoblast differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aim: To identify the demographics and risk factors in a selected patient population prescribed non-selective and cyclo-oxygenase-2 (COX- 2) selective non-steroidal anti-inflammatory drugs (NSAIDs). Method: A structured clinical self-audit form was distributed in January to March 2001 to 155 interested general practitioners (GPs) in rural Queensland. Results: Seventy one GPs participated in the audit and contributed 1417 patient records - 790 patients had received nonselective NSAIDs and 627 had received COX-2 inhibitors (celecoxib or rofecoxib). Patients who received COX-2 inhibitors were significantly older, more likely to have clinically important concomitant illness, and more likely to be taking medication known to interact with NSAIDs. They were also twice as likely to have two or more risk factors for adverse effects. The most common reasons for switching from an NSAID to a COX-2 inhibitor were reported to be a previous side effect from an NSAID (primarily related to gastrointestinal effects) or the doctor's perception of the superior efficacy of COX-2 inhibitor therapy. Conclusions: This study has shown that COX-2 inhibitors were used in a distinctly different patient population compared to non-selective NSAIDs. There were significant variations in the demographics and number of risk factors - for example, cardiovascular and renal - between the two identified populations. These differences may be due to doctors selecting COX-2 inhibitors for patients at high risk of gastrointestinal complications. However, the prescribing pattern may also be partly due to misconceptions about the relative safety and efficacy of COX-2 inhibitor drugs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Objective: Exposure to non-steroidal anti-inflammatory drugs (NSAIDs) is associated wit increased risk of serious gastrointestinal (GI) events compared with non-exposure. We investigated whether that risk is sustained over time. Data sources: Cochrane Controlled Trials Register (to 2002); MEDLINE, EMBASE, Derwent Drug File and Current Contents (1999-2002); manual searching of reviews (1999-2002). Study selection: From 479 search results reviewed and 221 articles retrieved, seven studies of patients exposed to prescription non-selective NSAIDs for more than 6 months and reporting time-dependent serious GI event rates were selected for quantitative data synthesis. These were stratified into two groups by study design. Data extraction: Incidence of GI events and number of patients at specific time points were extracted. Data synthesis: Meta-regression analyses were performed. Change in risk was evaluated by testing whether the slope of the regression line declined over time. Four randomised controlled trials (RCTs) provided evaluable data from five NSAID arms (aspirin, naproxen, two ibuprofen arms, and diclofenac). When the RCT data were combined, a small significant decline in annualised risk was seen: -0.005% (95% Cl, -0.008% to -0.001%) per month. Sensitivity analyses were conducted because there was disparity within the RCT data. The pooled estimate from three cohort studies showed no significant decline in annualised risk over periods up to 2 years: -0.003% (95% Cl, -0.008% to 0.003%) per month. Conclusions: Small decreases in risk over time were observed; these were of negligible clinical importance. For patients who need long-term (> 6 months) treatment, precautionary measures should be considered to reduce the net probability of serious GI events over the anticipated treatment duration. The effect of intermittent versus regular daily therapy on long-term risk needs further investigation.