6 resultados para Culture diversity
em University of Queensland eSpace - Australia
Resumo:
This study adopts integration and differentiation perspectives to examine why unity and diversity of organizational cultures emerged as a function of economic reform, and how subcultural differences were reflected in employees' perceptions of cultural practices. Data were gathered from in-depth interviews and a large-scale survey in two large, state-owned enterprises in north-east China. Results indicated that, although all employees were oriented towards a common set of cultural themes, the two generations of employees did not exemplify the themes in the same way. Specifically, unity was illustrated by employees' desire to maintain Harmony and to reduce Inequality. Diversity was revealed by first-generation employees' higher ratings on Loyalty, Security and even Bureaucracy. The findings are discussed in the light of traditional Chinese cultural values, political ideology and the social context. Implications are drawn for organizational cultural theory and research.
Resumo:
Diverse ketosynthase (KS) genes were retrieved from the microbial community associated with the Great Barrier Reef sponge Pseudoceratina clavata. Bacterial isolation and metagenomic approaches were employed. Phylogenetic analysis of 16S rRNA of culturable sponge-associated bacterial communities comprised eight groups over four phyla. Ten KS domains were amplified from four genera of isolates and phylogenetics demonstrated that these KS domains were located in three clusters (actinobacterial, cyanobacterial and trans-AT type). Metagenomic DNA of the sponge microbial community was extracted to explore community KS genes by two approaches: direct amplification of KS domains and construction of fosmid libraries for KS domain screening. Five KS domains were retrieved from polymerase chain reaction (PCR) amplification using sponge metagenome DNA as template and five fosmid clones containing KS domains found using multiplex PCR screening. Analysis of selected polyketide synthase (PKS) from one fosmid showed that the PKS consists of two modules. Open reading frames located up- and downstream of the PKS displayed similarity with membrane synthesis-related proteins such as cardiolipin synthase. Metagenome approaches did not detect KS domains found in sponge isolates. All KS domains from both metagenome approaches formed a single cluster with KS domains originating from metagenomes derived from other sponge species from other geographical regions.
Resumo:
This study used a culture-independent molecular approach to investigate the archaeal community composition of thermophilic bioleaching reactors. Two culture samples, MTC-A and MTC-B, grown with different concentrations of chalcopyrite (CuFeS2), a copper sulfidic ore, at a temperature of 78 degrees C and pH 1.6 were studied. Phylogenetic analysis of the 16S rRNA genes revealed that both cultures consisted of Archaea belonging to the Sulfolobales. The 16S rRNA gene clone library of MTC-A grown with 4% (w/v) chalcopyrite was dominated by a unique phylotype related to Sulfolobus shibatae (69% of total clones). The remaining clones were affiliated with Stygiolobus azoricus (11%), Metallosphaera sp. J1 (8%), Acidianus infernus (2%), and a novel phylotype related to Sulfurisphaera ohwakuensis (10%). In contrast, the clones from MTC-B grown with 12% (w/v) chalcopyrite did not appear to contain Sulfolobus shibatae-like organisms. Instead the bioleaching consortium was dominated by clones related to Sulfurisphaera ohwakuensis (73.9% of total clones). The remaining microorganisms detected were similar to those found in MTC-A.
Resumo:
Culture-independent molecular (16S ribosomal RNA) techniques showed distinct differences in bacterial communities associated with white band disease (WBD) Type I and healthy elkhorn coral Acropora palmata. Differences were apparent at all levels, with a greater diversity present in tissues of diseased colonies. The bacterial community associated with remote, non-diseased coral was distinct from the apparently healthy tissues of infected corals several cm from the disease lesion. This demonstrates a whole-organism effect from what appears to be a localised disease lesion, an effect that has also been recently demonstrated in white plague-like disease in star coral Montastraea annularis. The pattern of bacterial community structure changes was similar to that recently demonstrated for white plague-like disease and black band disease. Some of the changes are likely to be explained by the colonisation of dead and degrading tissues by a micro-heterotroph community adapted to the decomposition of coral tissues. However, specific ribosomal types that are absent from healthy tissues appear consistently in all samples of each of the diseases. These ribotypes are closely related members of a group of alpha-proteobacteria that cause disease, notably juvenile oyster disease, in other marine organisms. It is clearly important that members of this group are isolated for challenge experiments to determine their role in the diseases.