12 resultados para Cu-ZnO-ZrO2 : HZSM-5

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of mesoporous nanosize zirconia to the catalyst for methanol synthesis dedicates the nanosized catalyst and mesoporous duplicated properties. The catalyst bears the larger surface area, larger mesoporous volume and more uniform diameter, more surface metal atoms and oxygen vacancies than the catalyst prepared with the conventional coprecipitation method. The modification of microstructure and electronic effect could result in the change of the reduced chemical state and decrease of reducuction temperature of copper, donating the higher activity and methanol selectivity to the catalyst. The results of methanol synthesis demonstrate that the Cu+ is the optimum active site. Also, the interaction between the copper and zirconia shows the synergistic effect to fulfil the methanol synthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the start of last century, methanol synthesis has attracted great interests because of its importance in chemical industries and its potential as an environmentally friendly energy carrier. The catalyst for the methanol synthesis has been a key area of research in order to optimize the reaction process. In the literature, the nature of the active site and the effects of the promoter and support have been extensively investigated. In this updated review, the recent progresses in the catalyst innovation, optimization of the reaction conditions, reaction mechanism, and catalyst performance in methanol synthesis are comprehensively discussed. Key issues of catalyst improvement are highlighted, and areas of priority in R&D are identified in the conclusions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of the mechanical properties of 20 experimental alloys has been carried out. The effect of different contents of Si, Cu, Mg, Fe and Mn, as well as solidification rate, has been assessed using a strength-ductility chart and a quality index-strength chart developed for the alloys. The charts show that the strength generally increases and the ductility decreases with an increasing content of Cu and Mg. Increased Fe (at Fe/Mn ratio 0.5) dramatically lowers the ductility and strength of low Si alloys. Increased Si content generally increases the strength and the ductility. The increase in ductility with increased Si is particularly significant when the Fe content is high. The charts are used to show that the cracking of second phase particles imposes a limit to the maximum achievable strength by limiting the ductility of strong alloys. The (Cu + Mg) content (at.%), which determines the precipitation strengthening and the volume fraction of Cu-rich and Mg-rich intermetallics, can be used to select the alloys for given strength and ductility, provided the Fe content stays below the Si-dependent critical level for the formation of pre-eutectic alpha-phase particles or beta-phase plates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The superplastic deformation behavior and superplastic forming ability of the Zr41.25Ti13.75Ni10Cu12.5Be22.5 (at.%) bulk metallic glass (BMG) in the supercooled liquid region were investigated. The isothermal tensile results indicate (hat the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at hiqh-strain rates in the initial deformation stage. The maximum elongation reaches as high as 1624% at 656 K. and nanocrystallization was found to occur during the deformation process. Based cm the analysis on tensile deformation. a gear-like micropart is successfully die-forged via a superplastic forgings process. demonstrating that the BMG has excellent workability in the supercooled liquid region. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ELA-ICP-MS U-Pb zircon geochronology has been used to show that the porphyritic intrusions related to the formation of the Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina, are cogenetic with stratigraphically well-constrained volcanic and volcaniclastic rocks of the Late Miocene Farallon Negro Volcanic Complex. Zircon geochronology for intrusions in this deposit and the host volcanic sequence show that multiple mineralized porphyries were emplaced in a volcanic complex that developed over 1.5 million years. Volcanism occurred in a multivent volcanic complex in a siliciclastic intermontane basin. The complex evolved from early mafic-intermediate effusive phases to a later silicic explosive phase associated with mafic intrusions. Zircons from the basal mafic-intermediate lavas have ages that range from 8.46 +/- 0.14 to 7.94 +/- 0.27 Ma. Regionally extensive silicic explosive volcanism occurred at similar to8.0 Ma (8.05 +/- 0.13 and 7.96 +/- 0.11 Ma), which is co-temporal with intrusion of the earliest mineralized porphyries at Bajo de la Alumbrera (8.02 +/- 0.14 and 7.98 +/- 0.14 Ma). Regional uplift and erosion followed during which the magmatic-hydrothermal system was probably unroofed. Shortly thereafter, dacitic lava domes were extruded (7.95 +/- 0.17 Ma) and rhyolitic diatremes (7.79 +/- 0.13 Ma) deposited thick tuff blankets, across the region. Emplacement of large intermediate composition stocks occurred at 7.37 +/- 0.22 Ma, shortly before renewed magmatism occurred at Bajo de la Alumbrera (7.10 +/- 0.07 Ma). The latest porphyry intrusive event is temporally associated with new ore-bearing magmatic-hydrothermal fluids. Other dacitic intrusions are associated with subeconomic deposits that formed synchronously with the mineralized porphyries at Bajo de la Alumbrera. However, their emplacement continued (from 7.10 +/- 0.06 to 6.93 +/- 0.07 Ma) after the final intrusion at Bajo de al Alumbrera. Regional volcanism had ceased by 6.8 Ma (6.92 +/- 0.07 Ma). The brief history of the volcanic complex hosting the Bajo de la Alumbrera Cu-Au deposit differs from that of other Andean provinces hosting porphyry deposits. For example, at the El Salvador porphyry copper district in Chile, magmatism related to Cu mineralization was episodic in regional igneous activity that occurred over tens of millions of years. Bajo de la Alumbrera resulted from the superposition of multiple porphyry-related hydrothermal systems, temporally separated by a million years. It appears that the metal budget in porphyry ore deposits is not simply a function of their longevity and/or the superposition of multiple porphyry systems. Nor is it a function of the duration of the associated cycle of magmatism. Instead, the timing of processes operating in the parental magma body is the controlling factor in the formation of a fertile porphyry-related ore system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448 +/- 5 degrees C and 0.52 +/- 0.01 mole fraction ZnO and at 1502 +/- 5 degrees C and 0.71 +/- 0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3SiO2-ZnO system were found to be at 1315 +/- 5 degrees C and 1425 +/- 25 T, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An experimental program has been undertaken to explore the effect of iron concentration on porosity levels in Al-Si alloy sand castings. The effect of iron concentrations above, below and equal to the critical iron content for alloys with either 5 or 9% Si and either 0, 1 or 3% Cu has been determined. Increasing iron concentrations were found to increase porosity in all alloys except the copper-containing Al-5% Si alloys which displayed a porosity minimum at the critical iron content. Porosity was observed to be higher in the Al-9% Si castings than the Al-5% Si castings. Differences in the primary phase volume fraction and morphology may explain this observation. The results of this experimental work do not support the existing published theories that have been proposed to explain the effect the iron on porosity. An alternative theory is therefore developed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cu-based bulk metallic glass (BMG) composites containing in situ TiB particles were successfully fabricated. The reinforcing TiB particles with a size of 5-10 mu m are uniformly distributed in the amorphous matrix. The particles have a good bonding to the matrix with a reaction layer. The BMG composites exhibit an obvious ductility with a plastic strain of 2% for the 17.5 vol.% TiB sample due to the suppression of shear band propagation and the generation of multiple shear bands during compressive testing. The hardness of the materials is increased from Hv543 for monolithic BMG to Hv650 for 23.6 vol.% TiB-containing BMG composite. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The late Miocene Farallon Negro volcanics, comprising basaltic to rhyodacitic volcano-sedimentary rocks, host the Bajo de la Alumbrera porphyry copper-gold deposit in northwest Argentina. Early studies of the geology of the district have underpinned the general model for porphyry ore deposits where hydrothermal alteration and mineralization develop in and around porphyritic intrusions emplaced at shallow depths (2.5-3.5 km) into stratovolcanic assemblages. The Farallon Negro succession is dominated by thick sequences of volcano-sedimentary breccias, with lavas forming a minor component volumetrically. These volcaniclastic rocks conformably overlie crystalline basement-derived sedimentary rocks deposited in a developing foreland basin southeast of the Puna-Altiplano plateau. Within the Farallon Negro volcanics, volcanogenic accumulations evolved from early mafic to intermediate and silicic compositions. The younger and more silicic rocks are demonstrably coeval and comagmatic with the earliest group of mineralized porphyritic intrusions at Bajo de la Alumbrera. Our analysis of the volcanic stratigraphy and facies architecture of the Farallon Negro volcanics indicates that volcanic eruptions evolved from effusive to mixed effusive and explosive styles, as magma compositions changed to more intermediate and silicic compositions. Air early phase of mafic to intermediate voleanism was characterized by small synsedimentary intrusions with peperitic contacts, and lesser lava units scattered widely throughout the district, and interbedded with thick and extensive successions of coarse-grained sedimentary breccias. These sedimentary breccias formed from numerous debris- and hyperconcentrated flow events. A later phase of silicic volcanism included both effusive eruptions, forming several areally restricted lavas, and explosive eruptions, producing more widely dispersed (up to 5 kin) tuff units, some tip to 30-m thickness in proximal sections. Four key features of the volcanic stratigraphy suggest that the Farallon Negro volcanics need not simply record the construction of a large steep-sided polygenetic stratovolcano: (1) sheetlike, laterally continuous debris-flow and other coarse-grained sedimentary deposits are dominant, particularly in the lower sections; (2) mafic-intermediate composition lavas are volumetrically minor; (3) peperites are present throughout the sequence; and (4) fine-grained lacustrine sandstone-siltstone sequences occur in areas previously thought to be proximal to the summit region of the stratovolcano. Instead, the nature, distribution, and geometry of volcanic and volcaniclastic facies suggest that volcanism occurred as a relatively low relief, multiple-vent volcanic complex at the eastern edge of a broad, > 200-km-wide late Miocene volcanic belt and oil ail active foreland sedimentary basin to the Puna-Altiplano. Volcanism that occurred synchronously with the earliest stages of porphyry-related mineralization at Bajo de la Alumbrera apparently developed in an alluvial to ring plain setting that was distal to larger volcanic edifices.