3 resultados para Cryptosporidium ryanae

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Little is known of the prevalence of Cryptosporidium and Giardia parasites in sheep and the genotypes that they harbor, although potentially sheep may contribute significantly to contamination of watersheds. In the present study, conducted in Western Australia, a total of 1,647 sheep fecal samples were screened for the presence of Cryptosporidium and Giardia spp. using microscopy, and a subset (n = 500) were screened by PCR and genotyped. Analysis revealed that although both parasites were detected in a high proportion of samples by PCR (44% and 26% for Giardia and Cryptosporidium spp., respectively), with the exception of one Cryptosporidium hominis isolate, the majority of isolates genotyped are not commonly found in humans. These results suggest that the public health risk of sheep-derived Cryptosporidium and Giardia spp. in catchment areas and effluent may be overestimated and warrant further investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Giardia isolates from eight horses from New York State (NY), USA and two horses from Western Australia (WA) were genetically characterized at the SSU-rDNA and triose-phosphate isomerase (TPI) genes. Phylogenetic analysis of the TPI gene provided strong support for the placement of both isolates of Giardia from horses in WA and a single isolate from a horse in NY within the assemblage AI genotype of G. duodenalis. Another two isolates from horses in NY placed within the assemblage All genotype of G. duodenalis. Phylogenetic analysis of the TPI gene also provided strong bootstrap support for the placement of four G. duodenalis isolates from horses in NY into a potentially host-specific sub-assemblage of assemblage BIV. The results of this study are consistent with previous studies showing that assemblages AI and AII of G. duodenalis provide the greatest potential zoonotic risk to humans. Horses may therefore constitute a potential source for human infection of Giardia either directly or via watersheds. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sound application of molecular epidemiological principles requires working knowledge of both molecular biological and epidemiological methods. Molecular tools have become an increasingly important part of studying the epidemiology of infectious agents. Molecular tools have allowed the aetiological agent within a population to be diagnosed with a greater degree of efficiency and accuracy than conventional diagnostic tools. They have increased the understanding of the pathogenicity, virulence, and host-parasite relationships of the aetiological agent, provided information on the genetic structure and taxonomy of the parasite and allowed the zoonotic potential of previously unidentified agents to be determined. This review describes the concept of epidemiology and proper study design, describes the array of currently available molecular biological tools and provides examples of studies that have integrated both disciplines to successfully unravel zoonotic relationships that would otherwise be impossible utilising conventional diagnostic tools. The current limitations of applying these tools, including cautions that need to be addressed during their application are also discussed.(c) 2005 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.