133 resultados para Critical Film Thickness
em University of Queensland eSpace - Australia
Resumo:
Despite decades of experimental and theoretical investigation on thin films, considerable uncertainty exists in the prediction of their critical rupture thickness. According to the spontaneous rupture mechanism, common thin films become unstable when capillary waves. at the interfaces begin to grow. In a horizontal film with symmetry at the midplane. unstable waves from adjacent interfaces grow towards the center of the film. As the film drains and becomes thinner, unstable waves osculate and cause the film to rupture, Uncertainty sterns from a number of sources including the theories used to predict film drainage and corrugation growth dynamics. In the early studies, (lie linear stability of small amplitude waves was investigated in the Context of the quasi-static approximation in which the dynamics of wave growth and film thinning are separated. The zeroth order wave growth equation of Vrij predicts faster wave growth rates than the first order equation derived by Sharma and Ruckenstein. It has been demonstrated in an accompanying paper that film drainage rates and times measured by numerous investigations are bounded by the predictions of the Reynolds equation and the more recent theory of Manev, Tsekov, and Radoev. Solutions to combinations of these equations yield simple scaling laws which should bound the critical rupture thickness of foam and emulsion films, In this paper, critical thickness measurements reported in the literature are compared to predictions from the bounding scaling equations and it is shown that the retarded Hamaker constants derived from approximate Lifshitz theory underestimate the critical thickness of foam and emulsion films, The non-retarded Hamaker constant more adequately bounds the critical thickness measurements over the entire range of film radii reported in the literature. This result reinforces observations made by other independent researchers that interfacial interactions in flexible liquid films are not adequately represented by the retarded Hamaker constant obtained from Lifshitz theory and that the interactions become significant at much greater separations than previously thought. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A review of thin film drainage models is presented in which the predictions of thinning velocities and drainage times are compared to reported values on foam and emulsion films found in the literature. Free standing films with tangentially immobile interfaces and suppressed electrostatic repulsion are considered, such as those studied in capillary cells. The experimental thinning velocities and drainage times of foams and emulsions are shown to be bounded by predictions from the Reynolds and the theoretical MTsR equations. The semi-empirical MTsR and the surface wave equations were the most consistently accurate with all of the films considered. These results are used in an accompanying paper to develop scaling laws that bound the critical film thickness of foam and emulsion films. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
An examination has been carried out of the secondary passive film on Type 304 stainless steel in 0.5 M H2SO4. The characterization techniques used were electrochemical (potentiodynamic; potentiostatic, and film reduction experiments) and surface analytical. A bilayer model for the secondary passive film is proposed. It appears that next to the metal, there is a modified passive film which controls the electrochemical response; i.e., governs the current for any applied potential. On top of this modified passive film, the experimental data are consistent with a ''porous'' corrosion-product film which adds to the total film thickness but has little influence on the electrochemical response. The composition of the secondary passive film corresponds most probably to a mixed Fe/Cr oxide/hydroxide enriched in Cr3+, With a composition similar to a primary passive film.
Resumo:
A review of spontaneous rupture in thin films with tangentially immobile interfaces is presented that emphasizes the theoretical developments of film drainage and corrugation growth through the linearization of lubrication theory in a cylindrical geometry. Spontaneous rupture occurs when corrugations from adjacent interfaces become unstable and grow to a critical thickness. A corrugated interface is composed of a number of waveforms and each waveform becomes unstable at a unique transition thickness. The onset of instability occurs at the maximum transition thickness, and it is shown that only upper and lower bounds of this thickness can be predicted from linear stability analysis. The upper bound is equivalent to the Freakel criterion and is obtained from the zeroth order approximation of the H-3 term in the evolution equation. This criterion is determined solely by the film radius, interfacial tension and Hamaker constant. The lower bound is obtained from the first order approximation of the H-3 term in the evolution equation and is dependent on the film thinning velocity A semi-empirical equation, referred to as the MTR equation, is obtained by combining the drainage theory of Manev et al. [J. Dispersion Sci. Technol., 18 (1997) 769] and the experimental measurements of Radoev et al. [J. Colloid Interface Sci. 95 (1983) 254] and is shown to provide accurate predictions of film thinning velocity near the critical thickness of rupture. The MTR equation permits the prediction of the lower bound of the maximum transition thickness based entirely on film radius, Plateau border radius, interfacial tension, temperature and Hamaker constant. The MTR equation extrapolates to Reynolds equation under conditions when the Plateau border pressure is small, which provides a lower bound for the maximum transition thickness that is equivalent to the criterion of Gumerman and Homsy [Chem. Eng. Commun. 2 (1975) 27]. The relative accuracy of either bound is thought to be dependent on the amplitude of the hydrodynamic corrugations, and a semiempirical correlation is also obtained that permits the amplitude to be calculated as a function of the upper and lower bound of the maximum transition thickness. The relationship between the evolving theoretical developments is demonstrated by three film thickness master curves, which reduce to simple analytical expressions under limiting conditions when the drainage pressure drop is controlled by either the Plateau border capillary pressure or the van der Waals disjoining pressure. The master curves simplify solution of the various theoretical predictions enormously over the entire range of the linear approximation. Finally, it is shown that when the Frenkel criterion is used to assess film stability, recent studies reach conclusions that are contrary to the relevance of spontaneous rupture as a cell-opening mechanism in foams. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Equilibrium adsorption and desorption in mesoporous adsorbents is considered on the basis of rigorous thermodynamic analysis, in which the curvature-dependent solid-fluid potential and the compressibility of the adsorbed phase are accounted for. The compressibility of the adsorbed phase is considered for the first time in the literature in the framework of a rigorous thermodynamic approach. Our model is a further development of continuum thermodynamic approaches proposed by Derjaguin and Broekhoff and de Boer, and it is based on a reference isotherm of a non-porous material having the same chemical structure as that of the pore wall. In this improved thermodynamic model, we incorporated a prescription for transforming the solid-fluid potential exerted by the flat reference surface to the potential inside cylindrical and spherical pores. We relax the assumption that the adsorbed film density is constant and equal to that of the saturated liquid. Instead, the density of the adsorbed fluid is allowed to vary over the adsorbed film thickness and is calculated by an equation of state. As a result, the model is capable to describe the adsorption-desorption reversibility in cylindrical pores having diameter less than 2 nm. The generalized thermodynamic model may be applied to the pore size characterization of mesoporous materials instead of much more time-consuming molecular approaches. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Simple equations are proposed for determining elastic modulus and hardness properties of thin films on substrates from nanoindentation experiments. An empirical formulation relates the modulus E and hardness H of the film/substrate bilayer to corresponding material properties of the constituent materials via a power-law relation. Geometrical dependence of E and H is wholly contained in the power-law exponents, expressed here as sigmoidal functions of indenter penetration relative to film thickness. The formulation may be inverted to enable deconvolution of film properties from data on the film/substrate bilayers. Berkovich nanoindentation data for dense oxide and nitride films on silicon substrates are used to validate the equations and to demonstrate the film property deconvolution. Additional data for less dense nitride films are used to illustrate the extent to which film properties may depend on the method of fabrication.
Resumo:
MCM-41 samples of various pore dimensions are synthesized. Plotting of nitrogen adsorption data at 77 K versus the statistical film thickness (comparison plot) reveals three distinct stages, with a characteristic of two points of inflection. The steep intermediate stage caused by capillary condensation occurred in the highly uniform mesopores. From the slopes of the sections before and after the condensation, the surface area of the mesopores is calculated. The linear portion of the last section is extrapolated to the adsorption axis of the comparison plot, and this intercept is used to obtain the volume of the mesopores. From the surface area and pore volume, average mesopore diameter is calculated, and the value thus obtained is in good agreement with the pore dimension obtained from powder X-ray diffraction measurements. The principle of the calculation as well as problems associated are discussed in detail.
Resumo:
A generalised model for the prediction of single char particle gasification dynamics, accounting for multi-component mass transfer with chemical reaction, heat transfer, as well as structure evolution and peripheral fragmentation is developed in this paper. Maxwell-Stefan analysis is uniquely applied to both micro and macropores within the framework of the dusty-gas model to account for the bidisperse nature of the char, which differs significantly from the conventional models that are based on a single pore type. The peripheral fragmentation and random-pore correlation incorporated into the model enable prediction of structure/reactivity relationships. The occurrence of chemical reaction within the boundary layer reported by Biggs and Agarwal (Chem. Eng. Sci. 52 (1997) 941) has been confirmed through an analysis of CO/CO2 product ratio obtained from model simulations. However, it is also quantitatively observed that the significance of boundary layer reaction reduces notably with the reduction of oxygen concentration in the flue gas, operational pressure and film thickness. Computations have also shown that in the presence of diffusional gradients peripheral fragmentation occurs in the early stages on the surface, after which conversion quickens significantly due to small particle size. Results of the early commencement of peripheral fragmentation at relatively low overall conversion obtained from a large number of simulations agree well with experimental observations reported by Feng and Bhatia (Energy & Fuels 14 (2000) 297). Comprehensive analysis of simulation results is carried out based on well accepted physical principles to rationalise model prediction. (C) 2001 Elsevier Science Ltd. AH rights reserved.
Resumo:
The constrained regularisation procedure was applied to compute the pore size distributions (PSDs, f(x)) for a variety of activated carbons using overall adsorption equation based on the combination of the Kelvin equation and the statistical adsorbed film thickness. The impact of the boundary values of relative nitrogen pressure p/p(0) was analysed on the basis of the corresponding alterations in the PSDs. Changes in microporosity and mesoporosity of activated carbons can be described adequately only when the range of p/p(0) is as wide as possible, as at a high initial p/p(0) value, the f(x) curves can be broadened with shifted maxima especially for micropores and narrow mesopores. Comparative analysis of the PSDs and the adsorption potential, adsorption energy and fractal dimension distributions gives useful information on the complete description of the adsorbent characteristics. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
MCM-41 periodic mesoporous silicates with a high degree of structural ordering are synthesized and used as model adsorbents to study the isotherm prediction of nitrogen adsorption. The nitrogen adsorption isotherm at 77 K for a macroporous silica is measured and used in high-resolution alpha(s)-plot comparative analysis to determine the external surface area, total surface area and primary mesopore volume of the MCM-41 materials. Adsorption equilibrium data of nitrogen on the different pore size MCM-41 samples (pore diameters from 2.40 to 4.92 nm) are also obtained. Based on the Broekhoff and de Boer' thermodynamic analysis, the nitrogen adsorption isotherms for the different pore size MCM-41 samples are interpreted using a novel strategy, in which the parameters of an empirical expression, used to represent the potential of interaction between the adsorbate and adsorbent, are obtained by fitting only the multilayer region prior to capillary condensation for C-16 MCM-41. Subsequently the entire isotherm, including the phase transition, is predicted for all the different pore size MCM-41 samples without any fitting. The results show that the prediction of multilayer adsorption and total adsorbed amount are in good agreement with the experimental isotherms. The predictions of the relative pressure corresponding to capillary equilibrium (coexistence) transition agree remarkably with experimental data on the adsorption branch even for hysteretic isotherms, confirming that this is the branch appropriate for pore size distribution analysis. The impact of pore radius on the adsorption film thickness and capillary coexistence pressure is also investigated, and found to agree with the experimental data. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
A set of varying-thickness Au-films were thermally evaporated onto poly(styrene-co-acrylonitrile) thin film surfaces. The Au/PSA bi-layer targets were then implanted with 50 keV N+ ions to a fluence of 1 × 1016 ions/cm2 to promote metal-to-polymer adhesion and to enhance their mechanical and electrical performance. Electrical conductivity measurements of the implanted Au/PSA thin films showed a sharp percolation behavior versus the pre-implant Au-film thickness with a percolation threshold near the nominal thickness of 44 Å. The electrical conductivity results are discussed along with the film microstructure and the elemental diffusion/mixing within the Au/PSA interface obtained by scanning electron microscopy (SEM) and ion beam analysis techniques (RBS and ERD).
Resumo:
A transpassivation model was proposed for Fe–Cr–Ni stainless steels. In this model, the important steps and processes involved in transpassivation were illustrated. With some reasonable assumptions, transpassivation behaviours were predicted, such as the changes in film composition, film thickness, anodic current density and AC impedance spectrum in transpassive and secondary passive regions. It was demonstrated that these theoretical predictions were in good agreement with experimentally observed transpassivity of Fe–Cr–Ni stainless steels.
Resumo:
In this work, we propose an improvement of the classical Derjaguin-Broekhoff-de Boer (DBdB) theory for capillary condensation/evaporation in mesoporous systems. The primary idea of this improvement is to employ the Gibbs-Tolman-Koenig-Buff equation to predict the surface tension changes in mesopores. In addition, the statistical film thickness (so-called t-curve) evaluated accurately on the basis of the adsorption isotherms measured for the MCM-41 materials is used instead of the originally proposed t-curve (to take into account the excess of the chemical potential due to the surface forces). It is shown that the aforementioned modifications of the original DBdB theory have significant implications for the pore size analysis of mesoporous solids. To verify our improvement of the DBdB pore size analysis method (IDBdB), a series of the calcined MCM-41 samples, which are well-defined materials with hexagonally ordered cylindrical mesopores, were used for the evaluation of the pore size distributions. The correlation of the IDBdB method with the empirically calibrated Kruk-Jaroniec-Sayari (KJS) relationship is very good in the range of small mesopores. So, a major advantage of the IDBdB method is its applicability for small mesopores as well as for the mesopore range beyond that established by the KJS calibration, i.e., for mesopore radii greater than similar to4.5 nm. The comparison of the IDBdB results with experimental data reported by Kruk and Jaroniec for capillary condensation/evaporation as well as with the results from nonlocal density functional theory developed by Neimark et al. clearly justifies our approach. Note that the proposed improvement of the classical DBdB method preserves its original simplicity and simultaneously ensures a significant improvement of the pore size analysis, which is confirmed by the independent estimation of the mean pore size by the powder X-ray diffraction method.
Resumo:
The adsorbed film in small cylindrical mesopores is studied by using MCM-41 samples of uniform cylindrical channels as model systems. It is found that at a given relative pressure, the smaller the pore radius, the thicker the adsorbed film is, as postulated by Broekhoff and De Beer. Thermodynamics analysis established that the stability of the adsorbed film is determined by interface curvature and the potential of interaction between adsorbate and adsorbent. A semiempirical equation is proposed to describe the state of stable adsorbed films in cylindrical mesopores. It is also shown to be useful in calculations of pore size distributions of mesoporous solids.