4 resultados para Criminalidad -Véase- DELITO
em University of Queensland eSpace - Australia
Resumo:
Abscisic acid (ABA) supplied in the vase solution can induce stomatal closure in the leaves of cut flowers, including roses (Rosa hybrida L.). This effect may be beneficial in reducing water deficit stress. Extracellular pH can affect active ABA concentrations in the apoplast of guard cells, with sap alkalisation enhancing the physiological activity of ABA. Accordingly, it was hypothesized that vase solution pH may affect ABA-mediated stomatal closure of cut roses. Two experiments were conducted to study the interaction of vase solution pH and ABA. In the first, cut 'Baccara' roses were held in vase solutions with +/- 10(-5) M ABA at pH 6, pH 7 and pH 8. In the second experiment, roses were held with +/- 10(-5) M ABA at pH 6 and pH 8 in the presence and absence of 1 mg l(-1) AgNO3 as a bactericide. Supply of ABA increased vase life and reduced vase solution usage of flowers held in low pH 6 solutions, indicating induction of stomatal closure. Conversely, ABA supplied at pH 8 was associated with reduced vase life. This negative result was associated with enhanced development of vase solution microbes at high pH, which overrode any potential pH-mediated ABA efficacy effects.
Resumo:
Low temperature injury (LTI) of roses (Rosa hybrida L.) is difficult to assess by visual observation. Relative chlorophyll fluorescence (CF; F-v/F-m) is a non-invasive technique that provides an index of stress effects on photosystem 11 (PS 11) activity. This instrumental technique allows determination of the photosynthetic efficiency of plant tissues containing chloroplasts, such as rose leaves. In the present study, pre- and Post-Storage measurements of F-v/F-m were carried out to assess LTI in 'First Red' and 'Akito' roses harvested year round. Relationships between the pre-harvest environment conditions of temperature, relative humidity and photon flux density (PFD), F-v/F-m, and, vase life duration after storage are reported. After harvest, roses were stored at 1, 5 and 10 degrees C for 10 days. Non-stored roses were the control treatment. F-v/F-m ratios were reduced following storage, suggesting LTI of roses. However, reductions in F-v/F-m were not closely correlated with reduced vase life duration and were seasonally dependent. Only during winter experiments was F-v/F-m of roses stored at 1 degrees C significantly (P <= 0.001) lower compared to F-v/F-m of non-stored control roses and roses stored at 5 and 10 degrees C. Thus, the fall of F-v/F-m was due to an interaction of growing season and storage at 1 degrees C. Vase lives of roses grown during winter were significantly (P <= 0.001) shorter compared to roses grown during summer. Length of vase life was intermediate for roses grown during autumn and spring. Because of the lack of correlation between F-v/F-m and post-storage vase life it is concluded that the CF parameter F-v/F-m is nota practical index for assessing LTI in cold-stored roses. Higher PFD and temperature in summer were positively and significantly correlated with maintenance of post-storage FvIF ratios and longer vase life. It is suggested that shorter vase lives and lower post-storage F-v/F-m values after storage at 1 degrees C are consequences of reduced photosynthesis and smaller carbohydrate pools in winter-harvested roses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
The longevity of Grevillea 'Sylvia' inflorescences can be very short and is influenced by exposure to ethylene. Gibberellic acid has the potential to delay senescence in some cut flowers by acting as an anti-ethylene treatment. Gibberellic acid was therefore applied to Grevillea 'Sylvia' inflorescences in vase solutions to determine its effects on longevity. Treatments with gibberellic acid did not prolong the longevity of inflorescences or influence 1-aminocyclopropane-1-carboxylic acid concentrations. Treatments at high gibberellic acid concentrations enhanced flower abscission and we therefore conclude that vase-applied gibberellic acid treatments are not suitable for extending the longevity of cut Grevillea 'Sylvia' inflorescences.