3 resultados para Creatividad audiovisual
em University of Queensland eSpace - Australia
Resumo:
Recent evidence suggests that dopamine, acting via its D1 receptors, may function as a neurotransmitter in intrahypothalamic pathways involved in the stimulation of prolactin secretion. Functional dopamine D1 receptors are present in the ventromedial hypothalamic nucleus (VMH) and we hypothesized that they might be part of a prolactin-stimulatory pathway activated by stress. We tested this hypothesis in a series of experiments on sheep involving two different forms of stressors, audiovisual (barking dog) and high environmental temperature. We attempted to block the stimulation of prolactin secretion by infusion into the VMH of an antagonist specific for the D1 receptor. Ovariectomised, oestradiol-implanted merino ewes were surgically implanted with bilateral guide tubes directed at the VMH. After a 180 min pretreatment period, the ewes either were or were not exposed to a stressor (30 min of barking dog or 120 min at 35 degrees C, 65% relative humidity). D1 receptor antagonist, SCH23390 or vehicle (0.9% saline) was infused into the VMH (1.7 mu l/h, 120 nmol/h) for 60 min prior to and during the stressor period. Blood was sampled every 15 min via jugular cannulae and the plasma was assayed for prolactin, cortisol and growth hormone (GH). Both stressors significantly increased prolactin concentrations over control levels. SCH23390 infusion significantly attenuated the prolactin response to high environmental temperature, but had no effect on the prolactin response to audiovisual stress. Cortisol concentrations were significantly increased by audiovisual stress only and were not affected by SCH23390, GH concentrations were not changed by either stressor or infusion. Drug infusion alone did not affect the concentration of the hormones. The data suggest that the VMH D1 receptors are involved in a prolactin stimulatory pathway in response to high environmental temperature. The inability of the D1 antagonist to affect the response to the barking dog indicates that this pathway is stress-specific, implying that there is more than one mechanism or pathway involved in the prolactin response to different stressors.
Resumo:
The insulin hypoglycemia test (IHT) is widely regarded as the 'gold standard' for dynamic stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to investigate the temporal relationship between a rapid decrease in plasma glucose and the corresponding rise in plasma adenocorticotropic hormone (ACTH), and to assess the reproducibility of hormone responses to hypoglycemia in normal humans. Ten normal subjects underwent IHTs, using an insulin dose of 0.15 U/kg. Of these, eight had a second IHT (IHT2) and three went on to a third test (IHT3). Plasma ACTH and cortisol were measured at 15-min intervals and, additionally, in four IHT2s and the three IHT3s, ACTH was measured at 2.5- or 5-min intervals. Mean glucose nadirs and mean ACTH and cortisol responses were not significantly different between IHT1, IHT2 and IHT3. Combined data from all 21 tests showed the magnitude of the cortisol responses, but not the ACTH responses, correlated significantly with the depth and duration of hypoglycemia. All subjects achieved glucose concentrations of of less than or equal to 1.6 mmol/l before any detectable rise in ACTH occurred. In the seven tests performed with frequent sampling, an ACTH rise never preceeded the glucose nadir, but occurred at the nadir, or up to 15 min after. On repeat testing, peak ACTH levels varied markedly within individuals, whereas peak cortisol levels were more reproducible (mean coefficient of variation 7%). In conclusion, hypoglycemia of less than or equal to 1.6 mmol/l was sufficient to cause stimulation of the HPA axis in all 21 IHTs conducted in normal subjects. Nonetheless; our data cannot reveal whether higher glucose nadirs would stimulate increased HPA axis activity in all subjects. Overall, the cortisol response to hypoglycemia is more reproducible than the ACTH response but, in an individual subject, the difference in peak cortisol between two IHTs may exceed 100 nmol/l.