12 resultados para Coupled Model
em University of Queensland eSpace - Australia
Resumo:
In this work, we investigate the quantum dynamics of a model for two singlemode Bose-Einstein condensates which are coupled via Josephson tunnelling. Using direct numerical diagonalization of the Hamiltonian, we compute the time evolution of the expectation value for the relative particle number across a wide range of couplings. Our analysis shows that the system exhibits rich and complex behaviours varying between harmonic and non-harmonic oscillations, particularly around the threshold coupling between the delocalized and selftrapping phases. We show that these behaviours are dependent on both the initial state of the system and regime of the coupling. In addition, a study of the dynamics for the variance of the relative particle number expectation and the entanglement for different initial states is presented in detail.
Resumo:
In this work we investigate the energy gap between the ground state and the first excited state in a model of two single-mode Bose-Einstein condensates coupled via Josephson tunnelling. The ene:rgy gap is never zero when the tunnelling interaction is non-zero. The gap exhibits no local minimum below a threshold coupling which separates a delocalized phase from a self-trapping phase that occurs in the absence of the external potential. Above this threshold point one minimum occurs close to the Josephson regime, and a set of minima and maxima appear in the Fock regime. Expressions for the position of these minima and maxima are obtained. The connection between these minima and maxima and the dynamics for the expectation value of the relative number of particles is analysed in detail. We find that the dynamics of the system changes as the coupling crosses these points.
Resumo:
Theoretical developments as well as field and laboratory data have shown the influence of the capillary fringe on water table fluctuations to increase with the fluctuation frequency. The numerical solution of a full, partially saturated flow equation can be computationally expensive. In this paper, the influence of the capillary fringe on water table fluctuations is simplified through its parameterisation into the storage coefficient of a fully-saturated groundwater flow model using the complex effective porosity concept [Nielsen, P., Perrochet, P., 2000. Water table dynamics under capillary fringes: experiments and modelling. Advances in Water Resources 23 (1), 503-515; Nielsen, P., Perrochet, P., 2000. ERRATA: water table dynamics under capillary fringes: experiments and modelling (Advances in Water Resources 23 (2000) 503-515). Advances in Water Resources 23, 907-908]. The model is applied to sand flume observations of periodic water table fluctuations induced by simple harmonic forcing across a sloping boundary, analogous to many beach groundwater systems. While not providing information on the moisture distribution within the aquifer, this approach can reasonably predict the water table fluctuations in response to periodic forcing across a sloping boundary. Furthermore, he coupled ground-surface water model accurately predicts the extent of the seepage face formed at the sloping boundary. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
We study the distribution of energy level spacings in two models describing coupled single-mode Bose-Einstein condensates. Both models have a fixed number of degrees of freedom, which is small compared to the number of interaction parameters, and is independent of the dimensionality of the Hilbert space. We find that the distribution follows a universal Poisson form independent of the choice of coupling parameters, which is indicative of the integrability of both models. These results complement those for integrable lattice models where the number of degrees of freedom increases with increasing dimensionality of the Hilbert space. Finally, we also show that for one model the inclusion of an additional interaction which breaks the integrability leads to a non-Poisson distribution.
Resumo:
The galvanic corrosion of magnesium alloy AZ91D coupled to a steel fastener was studied using a boundary element method (BEM) model and experimental measurements. The BEM model used the measured polarization curves as boundary conditions. The experimental program involved measuring the total corrosion rate as a function of distance from the interface of the magnesium in the form of a sheet containing a mild steel circular insert (5 to 30 mm in diameter). The measured total corrosion rate was interpreted as due to galvanic corrosion plus self corrosion. For a typical case, the self corrosion was estimated typically to be similar to 230 mm/y for an area surrounding the interface and to a distance of about I cm from the interface. Scanning Kelvin Probe Force Microscopy (SKPFM) revealed microgalvanic cells with potential differences of approximately 100 mV across the AZ91D surface. These microgalvanic cells may influence the relative contributions of galvanic and self corrosion to the total corrosion of AZ91D.
Resumo:
This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.
Resumo:
The influence of geometric factors on the galvanic current density distribution for AZ91D coupled to steel was investigated using experimental measurements and a BEM model. The geometric factors were area ratio of anode/cathode, insulation distance between anode and cathode, depth of solution film covering the galvanic couple and the manner of interaction caused by two independent interacting galvanic couples. The galvanic current density distribution calculated from the BEM model was in good agreement with the experimental measurements. The galvanic current density distribution caused by the interaction of two independent galvanic couples can be reasonably predicted as the linear addition of the galvanic current density caused by each individual galvanic couple. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Electron-multiplying charge coupled devices promise to revolutionize ultrasensitive optical imaging. The authors present a simple methodology allowing reliable measurement of camera characteristics and statistics of single-electron events, compare the measurements to a simple theoretical model, and report camera performance in a truly photon-counting regime that eliminates the excess noise related to fluctuations of the multiplication gain.
Resumo:
The present study investigates the coordination between two people oscillating handheld pendulums, with a special emphasis on the influence of the mechanical properties of the effector systems involved. The first part of the study is an experiment in which eight pairs of participants are asked to coordinate the oscillation of their pendulum with the other participant's in an in-phase or antiphase fashion. Two types of pendulums, A and B, having different resonance frequencies (Freq A=0.98 Hz and Freq B=0.64 Hz), were used in different experimental combinations. Results confirm that the preferred frequencies produced by participants while manipulating each pendulum individually were close to the resonance frequencies of the pendulums. In their attempt to synchronize with one another, participants met at common frequencies that were influenced by the mechanical properties of the two pendulums involved. In agreement with previous studies, both the variability of the behavior and the shift in the intended relative phase were found to depend on the task-effector asymmetry, i.e., the difference between the mechanical properties of the effector systems involved. In the second part of the study, we propose a model to account for these results. The model consists of two cross-coupled neuro-mechanical units, each composed of a neural oscillator driving a wrist-pendulum system. Taken individually, each unit reproduced the natural tendency of the participants to freely oscillate a pendulum close to its resonance frequency. When cross-coupled through the vision of the pendulum of the other unit, the two units entrain each other and meet at a common frequency influenced by the mechanical properties of the two pendulums involved. The ability of the proposed model to address the other effects observed as a function of the different conditions of the pendulum and intended mode of coordination is discussed.
Resumo:
The planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In mantle convection models it has become common to make use of a modified (pressure sensitive, Boussinesq) von Mises yield criterion to limit the maximum stress the lithosphere can support. This approach allows the viscous, cool thermal boundary layer to deform in a relatively plate-like mode even in a fully Eulerian representation. In large-scale models with embedded continental crust where the mobile boundary layer represents the oceanic lithosphere, the von Mises yield criterion for the oceans ensures that the continents experience a realistic broad-scale stress regime. In detailed models of crustal deformation it is, however, more appropriate to choose a Mohr-Coulomb yield criterion based upon the idea that frictional slip occurs on whichever one of many randomly oriented planes happens to be favorably oriented with respect to the stress field. As coupled crust/mantle models become more sophisticated it is important to be able to use whichever failure model is appropriate to a given part of the system. We have therefore developed a way to represent Mohr-Coulomb failure within a code which is suited to mantle convection problems coupled to large-scale crustal deformation. Our approach uses an orthotropic viscous rheology (a different viscosity for pure shear to that for simple shear) to define a prefered plane for slip to occur given the local stress field. The simple-shear viscosity and the deformation can then be iterated to ensure that the yield criterion is always satisfied. We again assume the Boussinesq approximation - neglecting any effect of dilatancy on the stress field. An additional criterion is required to ensure that deformation occurs along the plane aligned with maximum shear strain-rate rather than the perpendicular plane which is formally equivalent in any symmetric formulation. It is also important to allow strain-weakening of the material. The material should remember both the accumulated failure history and the direction of failure. We have included this capacity in a Lagrangian-Integration-point finite element code and will show a number of examples of extension and compression of a crustal block with a Mohr-Coulomb failure criterion, and comparisons between mantle convection models using the von Mises versus the Mohr-Coulomb yield criteria. The formulation itself is general and applies to 2D and 3D problems, although it is somewhat more complicated to identify the slip plane in 3D.