3 resultados para Counting, light microscope
em University of Queensland eSpace - Australia
Resumo:
Cementum is known to be growth-hormone (GH)-responsive, but to what extent is unclear. This study examines the effects of extremes of GH status on cementogenesis in three lines of genetically modified mice; GH excess (giant), GH antagonist excess (dwarf), and GH receptor-deleted (GHR-KO) (dwarf). Age-matched mandibular molar tissues were processed for light microscope histology. Digital images of sections of first molar teeth were captured for morphometric analysis of lingual root cementum. Cross-sectional area of the cellular cementum was a sensitive guide to GH status, being reduced nearly 10-fold in GHR-KO mice, three-fold in GH antagonist mice, and increased almost two-fold in giant mice (p
Resumo:
Sequences of small-subunit rRNA genes were determined for Dermocystidium percae and a new Dermocystidium species established as D. fennicum sp. n. from perch in Finland. On the basis of alignment and phylogenetic analysis both species were placed in the Dermocystidium-Rhinosporidium clade within Ichthyosporea, D. fennicum as a specific sister taxon to D. salmonis, and D. percae in a clade different from D. fennicum. The ultrastructures of both species well agree with the characteristics approved within Ichthyosporea: walled spores produce uniflagellate zoospores lacking a collar or cortical alveoli. The two Dermocystidium species resemble Rhinosporidium seeberi (as described by light microscope), a member of the nearest relative genus, but differ in that in R. seeberi plasmodia have thousands of nuclei discernible, endospores are discharged through a pore in the wall of the sporangium, and zoospores have not been revealed. The plasmodial stages of both Dermocystidium species have a most unusual behaviour of nuclei, although we do not actually know how the nuclei transform during the development. Early stages have an ordinary nucleus with double, fenestrated envelope. In middle-aged plasmodia ordinary nuclei seem to be totally absent or are only seldom discernible until prior to sporogony, when rather numerous nuclei again reappear. Meanwhile single-membrane vacuoles with coarsely granular content, or complicated membranous systems were discernible. Ordinary nuclei may be re-formed within these vacuoles or systems. In D. percae small canaliculi and in D. fennicum minute vesicles may aid the nucleus-cytoplasm interchange of matter before formation of double-membrane-enveloped nuclei. Dermocystidium represents a unique case when a stage of the life cycle of an eukaryote lacks a typical nucleus.
Resumo:
Orientational fluorophores have been a useful tool in physical chemistry, biochemistry, and more recently structural biology due to the polarized nature of the light they emit and that fact that energy can be transferred between them. We present a practical scheme in which measurements of the intensity of emitted fluorescence can be used to determine limits on the mean and distribution of orientation of the absorption transition moment of membrane-bound. uorophores. We demonstrate how information about the orientation of. uorophores can be used to calculate the orientation factor k(2) required for use in FRET spectroscopy. We illustrate the method using images of AlexaFluor probes bound to MscL mechanosensitive transmembrane channel proteins in spherical liposomes.